让我们说我已经计算了包括美白在内的参考数据集的主要成分。然后,从主分量矢量创建的变换矩阵应用于测试数据集,将其投影到PC的子空间上。现在,我应该能够通过简单地将每列的系数相加来测量每个测试数据向量与PC超高层中心的距离。它是否正确?将此转换应用于我的参考数据会为所有列提供零长度,并且向量的长度似乎会减少,因为我使测试数据看起来更像参考数据,并且随着我使两组更加清晰而增长。
我是否正确以这种方式判断多维空间中的“距离”?它只是投影矩阵系数的总和吗?
非常感谢您提供的任何见解。
答案 0 :(得分:0)
距离不是线性和,它永远不是零(在原点之外)。它计算如下:
distance(x) = square_root( sum ( x(i)^2 ) )
如果这不是您要找的地方,请扩展您的问题,并提供一些代码和示例。