通过scipy.sparse向量(或矩阵)迭代

时间:2010-11-30 21:46:36

标签: python scipy sparse-matrix

我想知道用scipy.sparse迭代稀疏矩阵的非零项的最佳方法是什么。例如,如果我执行以下操作:

from scipy.sparse import lil_matrix

x = lil_matrix( (20,1) )
x[13,0] = 1
x[15,0] = 2

c = 0
for i in x:
  print c, i
  c = c+1

输出

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13   (0, 0) 1.0
14 
15   (0, 0) 2.0
16 
17 
18 
19  

因此看起来迭代器正在触及每个元素,而不仅仅是非零条目。我看过API

http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html

并搜索了一下,但我似乎无法找到有效的解决方案。

6 个答案:

答案 0 :(得分:60)

修改:使用bbtrb's method coo_matrix(使用nonzero)比我原来的建议快得多。 Sven Marnach建议使用itertools.izip也可以提高速度。目前最快的是using_tocoo_izip

import scipy.sparse
import random
import itertools

def using_nonzero(x):
    rows,cols = x.nonzero()
    for row,col in zip(rows,cols):
        ((row,col), x[row,col])

def using_coo(x):
    cx = scipy.sparse.coo_matrix(x)    
    for i,j,v in zip(cx.row, cx.col, cx.data):
        (i,j,v)

def using_tocoo(x):
    cx = x.tocoo()    
    for i,j,v in zip(cx.row, cx.col, cx.data):
        (i,j,v)

def using_tocoo_izip(x):
    cx = x.tocoo()    
    for i,j,v in itertools.izip(cx.row, cx.col, cx.data):
        (i,j,v)

N=200
x = scipy.sparse.lil_matrix( (N,N) )
for _ in xrange(N):
    x[random.randint(0,N-1),random.randint(0,N-1)]=random.randint(1,100)

产生这些timeit结果:

% python -mtimeit -s'import test' 'test.using_tocoo_izip(test.x)'
1000 loops, best of 3: 670 usec per loop
% python -mtimeit -s'import test' 'test.using_tocoo(test.x)'
1000 loops, best of 3: 706 usec per loop
% python -mtimeit -s'import test' 'test.using_coo(test.x)'
1000 loops, best of 3: 802 usec per loop
% python -mtimeit -s'import test' 'test.using_nonzero(test.x)'
100 loops, best of 3: 5.25 msec per loop

答案 1 :(得分:30)

最快的方法应该是转换为coo_matrix

cx = scipy.sparse.coo_matrix(x)

for i,j,v in zip(cx.row, cx.col, cx.data):
    print "(%d, %d), %s" % (i,j,v)

答案 2 :(得分:2)

要从scipy.sparse代码部分循环各种稀疏矩阵,我将使用这个小包装函数(请注意,对于Python-2,建议您使用xrangeizip在大型矩阵上表现更好):

from scipy.sparse import *
def iter_spmatrix(matrix):
    """ Iterator for iterating the elements in a ``scipy.sparse.*_matrix`` 

    This will always return:
    >>> (row, column, matrix-element)

    Currently this can iterate `coo`, `csc`, `lil` and `csr`, others may easily be added.

    Parameters
    ----------
    matrix : ``scipy.sparse.sp_matrix``
      the sparse matrix to iterate non-zero elements
    """
    if isspmatrix_coo(matrix):
        for r, c, m in zip(matrix.row, matrix.col, matrix.data):
            yield r, c, m

    elif isspmatrix_csc(matrix):
        for c in range(matrix.shape[1]):
            for ind in range(matrix.indptr[c], matrix.indptr[c+1]):
                yield matrix.indices[ind], c, matrix.data[ind]

    elif isspmatrix_csr(matrix):
        for r in range(matrix.shape[0]):
            for ind in range(matrix.indptr[r], matrix.indptr[r+1]):
                yield r, matrix.indices[ind], matrix.data[ind]

    elif isspmatrix_lil(matrix):
        for r in range(matrix.shape[0]):
            for c, d in zip(matrix.rows[r], matrix.data[r]):
                yield r, c, d

    else:
        raise NotImplementedError("The iterator for this sparse matrix has not been implemented")

答案 3 :(得分:1)

我遇到了同样的问题,实际上,如果你只关注速度,那么最快的方法(快一个数量级以上)就是将稀疏矩阵转换为密集矩阵(x.todense()),然后迭代在密集矩阵中的非零元素上。 (当然,这种方法需要更多的内存)

答案 4 :(得分:1)

tocoo()将整个矩阵具体化为不同的结构,这不是python 3的首选MO。您还可以考虑这个迭代器,这对大型矩阵特别有用。

from itertools import chain, repeat
def iter_csr(matrix):
  for (row, col, val) in zip(
    chain(*(
          repeat(i, r)
          for (i,r) in enumerate(comparisons.indptr[1:] - comparisons.indptr[:-1])
    )),
    matrix.indices,
    matrix.data
  ):
    yield (row, col, val)

我必须承认我使用了很多python-constructs,它们可能应该被numpy-constructs(尤其是enumerate)取代。

<强> NB

In [43]: t=time.time(); sum(1 for x in rather_dense_sparse_matrix.data); print(time.time()-t)
52.48686504364014
In [44]: t=time.time(); sum(1 for x in enumerate(rather_dense_sparse_matrix.data)); print(time.time()-t)
70.19013023376465
In [45]: rather_dense_sparse_matrix
<99829x99829 sparse matrix of type '<class 'numpy.float16'>'
with 757622819 stored elements in Compressed Sparse Row format>

所以是的,枚举有点慢(ish)

对于迭代器:

In [47]: it = iter_csr(rather_dense_sparse_matrix)
In [48]: t=time.time(); sum(1 for x in it); print(time.time()-t)
113.something something

所以你决定这个开销是否可以接受,在我的情况下,tocoo导致了MemoryOverflows

恕我直言:这样的迭代器应该是csr_matrix接口的一部分,类似于dict()中的items():)

答案 5 :(得分:0)

尝试使用filter(lambda x:x, x)代替x