我在Ubuntu 14.04上安装了Hadoop 2.7.0和Spark 2.0.0。我有一个主节点和两个从节点。所有守护进程都已经开始了。当我在没有Yarn的情况下启动spark-shell时,以下运行正常
scala> val inputRDD = sc.textFile("/spark_examples/war_and_peace.txt")
inputRDD: org.apache.spark.rdd.RDD[String] = /spark_examples/war_and_peace.txt MapPartitionsRDD[1] at textFile at <console>:24
scala> inputRDD.collect
res0: Array[String] = Array(The Project Gutenberg EBook of War and Peace, by Leo Tolstoy, "", This eBook is for the use of anyone anywhere at no cost and with almost, no restrictions whatsoever. You may copy it, give it away or re-use it, under the terms of the Project Gutenberg License included with this, eBook or online at www.gutenberg.org, "", "", Title: War and Peace, "", Author: Leo Tolstoy, "", Translators: Louise and Aylmer Maude, "", Posting Date: January 10, 2009 [EBook #2600], "", Last Updated: March 15, 2013, "", Language: English, "", Character set encoding: ASCII, "", *** START OF THIS PROJECT GUTENBERG EBOOK WAR AND PEACE ***, "", An Anonymous Volunteer, and David Widger, "", "", "", "", "", WAR AND PEACE, "", By Leo Tolstoy/Tolstoi, "", CONTENTS, "", BOOK ONE: 1805, "",...
scala>
但是当我用Yarn启动spark-shell时,会抛出以下错误
scala> val inputRDD = sc.textFile("/spark_examples/war_and_peace.txt")
inputRDD: org.apache.spark.rdd.RDD[String] = /spark_examples/war_and_peace.txt MapPartitionsRDD[1] at textFile at <console>:24
scala> inputRDD.collect
[Stage 0:> (0 + 2) / 2]17/04/03 21:31:04 ERROR shuffle.RetryingBlockFetcher: Exception while beginning fetch of 1 outstanding blocks
java.io.IOException: Failed to connect to HadoopSlave2/192.168.78.136:44749
at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:228)
at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:179)
at org.apache.spark.network.netty.NettyBlockTransferService$$anon$1.createAndStart(NettyBlockTransferService.scala:96)
at org.apache.spark.network.shuffle.RetryingBlockFetcher.fetchAllOutstanding(RetryingBlockFetcher.java:140)
at org.apache.spark.network.shuffle.RetryingBlockFetcher.start(RetryingBlockFetcher.java:120)
at org.apache.spark.network.netty.NettyBlockTransferService.fetchBlocks(NettyBlockTransferService.scala:105)
at org.apache.spark.network.BlockTransferService.fetchBlockSync(BlockTransferService.scala:92)
at org.apache.spark.storage.BlockManager.getRemoteBytes(BlockManager.scala:554)
at org.apache.spark.scheduler.TaskResultGetter$$anon$2$$anonfun$run$1.apply$mcV$sp(TaskResultGetter.scala:76)
at org.apache.spark.scheduler.TaskResultGetter$$anon$2$$anonfun$run$1.apply(TaskResultGetter.scala:57)
at org.apache.spark.scheduler.TaskResultGetter$$anon$2$$anonfun$run$1.apply(TaskResultGetter.scala:57)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1857)
at org.apache.spark.scheduler.TaskResultGetter$$anon$2.run(TaskResultGetter.scala:56)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.net.ConnectException: Connection refused: HadoopSlave2/192.168.78.136:44749
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717)
at io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel.java:224)
at io.netty.channel.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnect(AbstractNioChannel.java:289)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:528)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
... 1 more
我错过了配置中的任何内容吗?
答案 0 :(得分:1)
Spark使用随机端口进行驱动程序和执行程序之间的内部通信,这可能会被防火墙阻止。尝试在群集节点之间打开端口。
如果您对集群中的防火墙规则严格要求,也可以使用此固定端口,
val conf = new SparkConf()
.setMaster(master)
.setAppName("namexxx")
.set("spark.driver.port", "51810")
.set("spark.fileserver.port", "51811")
.set("spark.broadcast.port", "51812")
.set("spark.replClassServer.port", "51813")
.set("spark.blockManager.port", "51814")
.set("spark.executor.port", "51815")