我正在尝试将基于列的一组S3文件拆分为基于单个列的文件夹。我不确定下面代码的问题。
column 1, column 2
20130401, value1
20130402, value2
20130403, value3
val newDataDF = sqlContext.read.parquet("s3://xxxxxxx-bucket/basefolder/")
newDataDF.cache()
val uniq_days = newDataDF.select(newDataDF("column1")).distinct.show()
uniq_days.cache()
uniq_days.foreach(x => {newDataDF.filter(newDataDF("column1") === x).write.save(s"s3://xxxxxx-bucket/partitionedfolder/$x/")})
你能帮帮忙吗?即使是pyspark版也行。
我正在寻找以下结构。
s3://xxxxxx-bucket/partitionedfolder/20130401/part-***
column 1, column 2
20130401, value 1
s3://xxxxxx-bucket/partitionedfolder/20130402/part-***
column 1, column 2
20130402, value 1
s3://xxxxxx-bucket/partitionedfolder/20130403/part-***
column 1, column 2
20130403, value 1
这是错误
org.apache.spark.SparkException: Job aborted due to stage failure: Task 22 in stage 82.0 failed 4 times, most recent failure: Lost task 22.3 in stage 82.0 (TID 2753
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1454)
Caused by: java.lang.NullPointerException
使用当前解决方案进行更新:
val newDataDF = sqlContext.read.parquet("s3://xxxxxx-bucket/basefolder/")
newDataDF.cache()
val uniq_days = newDataDF.select(newDataDF("column1")).distinct.rdd.map(_.getString(0)).collect().toList
uniq_days.foreach(x => {newDataDF.filter(newDataDF("column1") === x).write.save(s"s3://xxxxxx-bucket/partitionedfolder/$x/")})
答案 0 :(得分:2)
我想你错过了" s"在保存。 :)
http://docs.scala-lang.org/overviews/core/string-interpolation.html#the-s-string-interpolator
变化:
write.save("s3://xxxxxx-bucket/partitionedfolder/$x/")})
致:
write.save(s"s3://xxxxxx-bucket/partitionedfolder/$x/")})
还有更多问题,show永远不会返回任何值。
变化:
val uniq_days = newDataDF.select(newDataDF("mevent_day")).distinct.show()
uniq_days.cache()
要:
val uniq_days = newDataDF.select(newDataDF("mevent_day")).distinct.rdd.map(_.getString(0)).collect().toList