使用神经网络和ROCR包绘制神经网络曲线

时间:2017-04-02 20:08:00

标签: r neural-network classification roc

这里我有一个分类任务,我需要使用神经网络和ROCR包。问题是我在使用预测功能时收到了错误消息。

这是我的代码:

#load packages
require(neuralnet)
library(ROCR)

#create data set 
train<-read.table(file="train.txt",header=TRUE,sep=",")
test<- read.table(file="test.txt",header=TRUE,sep=",")

#build model and make predictions 
nn.sag <- neuralnet(Type ~ Area+Perimeter+Compactness+Length+Width+Asymmetry+Groove, data = train, hidden = 5, algorithm = "sag", err.fct = "sse", linear.output = FALSE)

prob = compute(nn.sag, test[, -ncol(test)] )
prob.result <- prob$net.result

nn.pred = prediction(prob.result, test$Type)
pref <- performance(nn.pred, "tpr", "fpr")
plot(pref)

在这里,我收到了'预测'功能的错误消息: '$运算符对原子矢量无效

数据集看起来像(这里只有训练数据集):

Area,Perimeter,Compactness,Length,Width,Asymmetry,Groove,Type
14.8,14.52,0.8823,5.656,3.288,3.112,5.309,1
14.79,14.52,0.8819,5.545,3.291,2.704,5.111,1
14.99,14.56,0.8883,5.57,3.377,2.958,5.175,1
19.14,16.61,0.8722,6.259,3.737,6.682,6.053,0
15.69,14.75,0.9058,5.527,3.514,1.599,5.046,1
14.11,14.26,0.8722,5.52,3.168,2.688,5.219,1
13.16,13.55,0.9009,5.138,3.201,2.461,4.783,1
16.16,15.33,0.8644,5.845,3.395,4.266,5.795,0
15.01,14.76,0.8657,5.789,3.245,1.791,5.001,1
14.11,14.1,0.8911,5.42,3.302,2.7,5,1
17.98,15.85,0.8993,5.979,3.687,2.257,5.919,0
21.18,17.21,0.8989,6.573,4.033,5.78,6.231,0
14.29,14.09,0.905,5.291,3.337,2.699,4.825,1
14.59,14.28,0.8993,5.351,3.333,4.185,4.781,1
11.42,12.86,0.8683,5.008,2.85,2.7,4.607,1
12.11,13.47,0.8392,5.159,3.032,1.502,4.519,1
15.6,15.11,0.858,5.832,3.286,2.725,5.752,0
15.38,14.66,0.899,5.477,3.465,3.6,5.439,0
18.94,16.49,0.875,6.445,3.639,5.064,6.362,0
12.36,13.19,0.8923,5.076,3.042,3.22,4.605,1
14.01,14.29,0.8625,5.609,3.158,2.217,5.132,1
17.12,15.55,0.8892,5.85,3.566,2.858,5.746,0
15.78,14.91,0.8923,5.674,3.434,5.593,5.136,1
16.19,15.16,0.8849,5.833,3.421,0.903,5.307,1
14.43,14.4,0.8751,5.585,3.272,3.975,5.144,1
13.8,14.04,0.8794,5.376,3.155,1.56,4.961,1
14.46,14.35,0.8818,5.388,3.377,2.802,5.044,1
18.59,16.05,0.9066,6.037,3.86,6.001,5.877,0
18.75,16.18,0.8999,6.111,3.869,4.188,5.992,0
15.49,14.94,0.8724,5.757,3.371,3.412,5.228,1
12.73,13.75,0.8458,5.412,2.882,3.533,5.067,1
13.5,13.85,0.8852,5.351,3.158,2.249,5.176,1
14.38,14.21,0.8951,5.386,3.312,2.462,4.956,1
14.86,14.67,0.8676,5.678,3.258,2.129,5.351,1
18.45,16.12,0.8921,6.107,3.769,2.235,5.794,0
17.32,15.91,0.8599,6.064,3.403,3.824,5.922,0
20.2,16.89,0.8894,6.285,3.864,5.173,6.187,0
20.03,16.9,0.8811,6.493,3.857,3.063,6.32,0
18.14,16.12,0.8772,6.059,3.563,3.619,6.011,0
13.99,13.83,0.9183,5.119,3.383,5.234,4.781,1
15.57,15.15,0.8527,5.92,3.231,2.64,5.879,0
16.2,15.27,0.8734,5.826,3.464,2.823,5.527,1
20.97,17.25,0.8859,6.563,3.991,4.677,6.316,0
14.16,14.4,0.8584,5.658,3.129,3.072,5.176,1
13.45,14.02,0.8604,5.516,3.065,3.531,5.097,1
15.5,14.86,0.882,5.877,3.396,4.711,5.528,1
16.77,15.62,0.8638,5.927,3.438,4.92,5.795,0
12.74,13.67,0.8564,5.395,2.956,2.504,4.869,1
14.88,14.57,0.8811,5.554,3.333,1.018,4.956,1
14.28,14.17,0.8944,5.397,3.298,6.685,5.001,1
14.34,14.37,0.8726,5.63,3.19,1.313,5.15,1
14.03,14.16,0.8796,5.438,3.201,1.717,5.001,1
19.11,16.26,0.9081,6.154,3.93,2.936,6.079,0
14.52,14.6,0.8557,5.741,3.113,1.481,5.487,1
18.43,15.97,0.9077,5.98,3.771,2.984,5.905,0
18.81,16.29,0.8906,6.272,3.693,3.237,6.053,0
13.78,14.06,0.8759,5.479,3.156,3.136,4.872,1
14.69,14.49,0.8799,5.563,3.259,3.586,5.219,1
18.85,16.17,0.9056,6.152,3.806,2.843,6.2,0
12.88,13.5,0.8879,5.139,3.119,2.352,4.607,1
12.78,13.57,0.8716,5.262,3.026,1.176,4.782,1
14.33,14.28,0.8831,5.504,3.199,3.328,5.224,1
19.46,16.5,0.8985,6.113,3.892,4.308,6.009,0
19.38,16.72,0.8716,6.303,3.791,3.678,5.965,0
15.26,14.85,0.8696,5.714,3.242,4.543,5.314,1
20.24,16.91,0.8897,6.315,3.962,5.901,6.188,0
19.94,16.92,0.8752,6.675,3.763,3.252,6.55,0
20.71,17.23,0.8763,6.579,3.814,4.451,6.451,0
16.17,15.38,0.8588,5.762,3.387,4.286,5.703,0
13.02,13.76,0.8641,5.395,3.026,3.373,4.825,1
16.53,15.34,0.8823,5.875,3.467,5.532,5.88,0
13.89,14.02,0.888,5.439,3.199,3.986,4.738,1
18.98,16.57,0.8687,6.449,3.552,2.144,6.453,0
17.08,15.38,0.9079,5.832,3.683,2.956,5.484,1
15.03,14.77,0.8658,5.702,3.212,1.933,5.439,1
16.14,14.99,0.9034,5.658,3.562,1.355,5.175,1
18.65,16.41,0.8698,6.285,3.594,4.391,6.102,0
20.1,16.99,0.8746,6.581,3.785,1.955,6.449,0
17.99,15.86,0.8992,5.89,3.694,2.068,5.837,0
15.88,14.9,0.8988,5.618,3.507,0.7651,5.091,1
13.22,13.84,0.868,5.395,3.07,4.157,5.088,1
18.3,15.89,0.9108,5.979,3.755,2.837,5.962,0
19.51,16.71,0.878,6.366,3.801,2.962,6.185,0

2 个答案:

答案 0 :(得分:2)

prediction()函数在R中的neuralnet和ROCR包中都可用。所以不要将两个包一起加载。首先加载神经网络,训练模型然后使用detach()分离它,然后加载ROCR包。请尝试以下代码:

#load packages
require(neuralnet)

#create data set 
train<-read.table(file="train.txt",header=TRUE,sep=",")
test<- read.table(file="test.txt",header=TRUE,sep=",")

#build model and make predictions 
nn.sag <- neuralnet(Type ~ Area+Perimeter+Compactness+Length+Width+Asymmetry+Groove, data = train, hidden = 5, algorithm = "sag", err.fct = "sse", linear.output = FALSE)

prob = compute(nn.sag, test[, -ncol(test)] )
prob.result <- prob$net.result

detach(package:neuralnet,unload = T)

library(ROCR)
nn.pred = prediction(prob.result, test$Type)
pref <- performance(nn.pred, "tpr", "fpr")
plot(pref)

答案 1 :(得分:0)

或者只是使用SELECT * FROM Tab1 WHERE Dep IN ( SELECT DEP FROM tab1 WHERE val IN (10,20,30) GROUP BY Dep HAVING COUNT(Val) = COUNT(DISTINCT Val) )

用于选择正确的包装。