比较2个数组是否相等,并删除两个数组中的条目

时间:2017-04-01 22:13:24

标签: python arrays numpy

假设我有2个numpy数组,其中包含以下元素:

arr1 = [[1, 2], [3, 5], [3, 4]]
arr2 = [[2, 3], [3, 4], [6, 6]]

我希望结果数组附加arr2或水平堆叠到  arr1包含两个数组中不存在的元素:

arr3 = [[1, 2], [3, 5], [2, 3], [6, 6]]

如您所见,[3, 4]在预期的结果数组中不存在。什么是最好的numpy和pythonic实现?

4 个答案:

答案 0 :(得分:3)

我参加聚会有点晚了,但这是一种仅以适度的算法成本利用numpy速度的方法:O(n log n)。事实证明,对于许多大小的输入数组,运行时由类型转换的成本占主导地位。见下面的基准:

from timeit import timeit
import numpy as np

def make_inputs(N, ncol):
    global arr1, arr2, list1, list2, lot1, lot2
    # create making sure there are no duplicates *within* arr1 or arr2
    all_ = np.array(list(set(map(tuple, np.random.randint(0, 2 * N, (N + N//2, ncol))))))
    # create input of various data types
    arr1 = all_[np.random.choice(len(all_), N, False)]
    arr2 = all_[np.random.choice(len(all_), N, False)]
    list1 = arr1.tolist()
    list2 = arr2.tolist()
    lot1 = list(map(tuple, list1))
    lot2 = list(map(tuple, list2))

def np_unique_preserve_order(a, b):
    c = np.r_[a, b]
    cr = c.view(np.dtype("|S" + str(c.shape[-1] * c.dtype.itemsize)))
    uniq, inv, count = np.unique(cr.ravel(), return_inverse=True,
                                 return_counts=True)
    return c[(count==1)[inv], :]

def np_unique(a, b):
    c = np.r_[a, b]
    cr = c.view(np.dtype("|S" + str(c.shape[-1] * c.dtype.itemsize)))
    uniq, count = np.unique(cr.ravel(), return_counts=True)
    return uniq[count==1, None].view(c.dtype)

def np_sort(a, b):
    c = np.r_[a, b]
    cr = np.sort(c.view(np.dtype("|S" + str(c.shape[-1] * c.dtype.itemsize))).ravel())
    m = np.empty(cr.shape, bool)
    m[0] = True
    m[1:] = cr[:-1] != cr[1:]
    m[:-1] &= m[1:]
    return cr[m, None].view(c.dtype)

# check
make_inputs(1000, 2)
assert set(map(tuple, lot1)).symmetric_difference(set(map(tuple, lot2))) == set(map(tuple, np_sort(arr1, arr2)))
assert set(map(tuple, lot1)).symmetric_difference(set(map(tuple, lot2))) == set(map(tuple, np_unique(arr1, arr2)))
assert set(map(tuple, lot1)).symmetric_difference(set(map(tuple, lot2))) == set(map(tuple, np_unique_preserve_order(arr1, arr2)))


for N, ncol in ((10, 2), (10000, 2), (100000, 20)):
    make_inputs(N, ncol)
    results = []
    for inputs in 'lot', 'list', 'arr':
        res = []
        if inputs == 'lot':
            res.append('{:11.5f} ms'.format(timeit(f'list(set({inputs}1).symmetric_difference(set({inputs}2)))',
                 f'from __main__ import {inputs}1, {inputs}2', number=10) * 100))
        else:
            res.append('{:11.5f} ms'.format(timeit(f'list(set(map(tuple, {inputs}1)).symmetric_difference(set(map(tuple, {inputs}2))))',
                 f'from __main__ import {inputs}1, {inputs}2', number=10) * 100))

        res.append('{:11.5f} ms'.format(timeit(f'np_sort({inputs}1, {inputs}2)', f'from __main__ import {inputs}1, {inputs}2, np_sort',
                 number=10) * 100))
        res.append('{:11.5f} ms'.format(timeit(f'np_unique({inputs}1, {inputs}2)', f'from __main__ import {inputs}1, {inputs}2, np_unique',
                 number=10) * 100))
        res.append('{:11.5f} ms'.format(timeit(f'np_unique_preserve_order({inputs}1, {inputs}2)', f'from __main__ import {inputs}1, {inputs}2, np_unique_preserve_order',
                 number=10) * 100))
        results.append(res)
    results = zip(*results)
    appmin = lambda l: l + (min(l),)
    print(f'\nno rows {N}, no colums {ncol}')
    print('input type                           lot           list          array           best')
    print(f'symm_diff                ', *appmin(next(results)))
    print(f'np_sort                  ', *appmin(next(results)))
    print(f'np_unique                ', *appmin(next(results)))
    print(f'np_unique_preserve_order ', *appmin(next(results)))

输出:

no rows 10, no colums 2
input type                           lot           list          array           best
symm_diff                     0.00232 ms     0.00453 ms     0.02034 ms     0.00232 ms
np_sort                       0.03890 ms     0.03269 ms     0.03060 ms     0.03060 ms
np_unique                     0.04209 ms     0.04118 ms     0.04136 ms     0.04118 ms
np_unique_preserve_order      0.05289 ms     0.05253 ms     0.05253 ms     0.05253 ms

no rows 10000, no colums 2
input type                           lot           list          array           best
symm_diff                     3.71800 ms     8.30081 ms    21.92841 ms     3.71800 ms
np_sort                       7.98128 ms     8.09973 ms     2.80091 ms     2.80091 ms
np_unique                     8.49229 ms     8.25701 ms     3.00654 ms     3.00654 ms
np_unique_preserve_order     10.12377 ms     8.67133 ms     3.36172 ms     3.36172 ms

no rows 100000, no colums 20
input type                           lot           list          array           best
symm_diff                    97.83141 ms   211.20736 ms   590.15145 ms    97.83141 ms
np_sort                     317.73268 ms   316.50081 ms    89.97820 ms    89.97820 ms
np_unique                   324.68922 ms   326.89891 ms    98.06377 ms    98.06377 ms
np_unique_preserve_order    339.18597 ms   339.00286 ms   120.94041 ms   120.94041 ms

对于非常小的数组symm_diff是最快的,但对于较大的数组np_sort在允许所有方法使用最适合的数据类型时有一个小的边缘。

答案 1 :(得分:2)

arr_3 = list(set(arr_1).symmetric_difference(set(arr_2)))

或:

arr_3 = list(set(map(tuple, arr_1))
    .symmetric_difference(set(map(tuple, arr_2))))

一点研究:

from random import randint
from timeit import timeit

import itertools

arr1 = [[randint(0, 5), randint(0, 5)] for _ in range(1000)]
arr2 = [[randint(0, 5), randint(0, 5)] for _ in range(1000)]


def symmetric_difference(a, b):
    now_exists = set()
    results = []
    for e in itertools.chain(a, b):
        rerp_of_e = repr(e)
        if rerp_of_e not in now_exists:
            now_exists.add(rerp_of_e)
            results.append(e)

    return results


def method2(a, b):
    c = a + b
    return [l for l in c if c.count(l) == 1]


print(timeit('[l for l in arr1 + arr2 if (arr1 + arr2).count(l) == 1]', 'from __main__ import arr1, arr2',
             number=10) / 10)

print(timeit('method2(arr1, arr2)', 'from __main__ import arr1, arr2, method2',
             number=10) / 10)

print(timeit('list(set(map(tuple, arr1)).symmetric_difference(set(map(tuple, arr2))))',
             'from __main__ import arr1, arr2', number=10) / 10)

print(timeit('symmetric_difference(arr1, arr2)', 'from __main__ import arr1, arr2, symmetric_difference',
             number=10) / 10)

输出:

0.16653713929933542
0.14676828165012284
0.00030277483018301685
0.0008909022958581315

答案 2 :(得分:2)

怎么样:

[l for l in arr1+arr2 if (arr1+arr2).count(l)==1]

输出:

[[1, 2], [3, 5], [2, 3], [6, 6]]

或者,如果你想要它更有效:

c=arr1+arr2
[l for l in c if c.count(l)==1]

答案 3 :(得分:2)

如果只有相同索引中的项目可以相似,您可以使用简单的numpythonic方法,如下所示:

In [10]: mask = ~(arr1 == arr2).all(1)

In [11]: np.vstack((arr1[mask], arr2[mask]))
Out[11]: 
array([[1, 2],
       [3, 5],
       [2, 3],
       [6, 6]])

否则,您可以根据Jaime's answer找到交叉点,然后将它们从组合数组中排除。

或使用以下方法:

In [17]: arr1_view = arr1.view([('', arr1.dtype)] * arr1.shape[1])

In [18]: arr2_view = arr2.view([('', arr2.dtype)] * arr2.shape[1])

In [19]: diff_arr1 = np.setdiff1d(arr1_view, arr2_view).view(arr1.dtype).reshape(-1, arr1.shape[1])

In [20]: diff_arr2 = np.setdiff1d(arr2_view, arr1_view).view(arr2.dtype).reshape(-1, arr2.shape[1])

In [21]: np.vstack((diff_arr1, diff_arr2))
Out[21]: 
array([[1, 2],
       [3, 5],
       [2, 3],
       [6, 6]])

如果你正在处理python数组和特别短的数组,你可以使用如下列表理解:

In [204]: [i for i in arr1 + arr2 if not (i in arr1 and i in arr2)]
Out[204]: [[1, 2], [3, 5], [2, 3], [6, 6]]

请注意,它比将列表转换为元组更快,而对于较大的数组使用set for short arrays bit,基于集合的方法需要蛋糕,在这种情况下,使用Numpy仍然更好:

In [209]: %timeit set(map(tuple, arr1)).symmetric_difference(map(tuple, arr2))
100000 loops, best of 3: 1.51 µs per loop

In [210]: %timeit [i for i in arr1 + arr2 if not (i in arr1 and i in arr2)]
1000000 loops, best of 3: 1.28 µs per loop