我正在从kafka队列中读取数据[json as String],并使用liftweb json api将json作为String解析为case类。
这是代码片段
val sparkStreamingContext = new StreamingContext(sparkConf, Seconds(5))
val kafkaParam: Map[String, String] = Map(
"bootstrap.servers" -> kafkaServer,
"key.deserializer" -> classOf[StringDeserializer].getCanonicalName,
"value.deserializer" -> classOf[StringDeserializer].getCanonicalName,
"zookeeper.connect" -> zookeeperUrl,
"group.id" -> "demo-group")
import org.apache.spark.streaming.kafka._
import net.liftweb.json.{DefaultFormats, Formats}
import net.liftweb.json._
val topicSet = Map(kafkaTopic -> 1)
val streaming = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](sparkStreamingContext, kafkaParam, topicSet, StorageLevel.MEMORY_AND_DISK)
streaming.map { case (id, tweet) => implicit val formats: Formats = DefaultFormats
(id, parse(tweet).extract[Tweet])
}.print()
sparkStreamingContext.start()
sparkStreamingContext.awaitTermination()
我得到了这个例外
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0.0 in stage 1.0 (TID 1) had a not serializable result: net.liftweb.json.DefaultFormats$
Serialization stack:
- object not serializable (class: net.liftweb.json.DefaultFormats$, value: net.liftweb.json.DefaultFormats$@74a2fec)
- field (class: Tweet, name: formats, type: interface net.liftweb.json.Formats)
- object (class Tweet, Tweet(Akash24,Adele))
- field (class: scala.Tuple2, name: _2, type: class java.lang.Object)
- object (class scala.Tuple2, (1,Tweet(Akash24,Adele)))
- element of array (index: 0)
- array (class [Lscala.Tuple2;, size 11)
任何人都可以帮我解决这个问题 任何帮助将不胜感激 感谢
答案 0 :(得分:1)
从日志中看起来它似乎是Class not Serializable的一个简单例外。纠正是使用以下代码:
sparkConf.registerKryoClasses(Array(classOf[DefaultFormats]))
val sparkStreamingContext = new StreamingContext(sparkConf, Seconds(5))
val kafkaParam: Map[String, String] = Map(
"bootstrap.servers" -> kafkaServer,
"key.deserializer" -> classOf[StringDeserializer].getCanonicalName,
"value.deserializer" -> classOf[StringDeserializer].getCanonicalName,
"zookeeper.connect" -> zookeeperUrl,
"group.id" -> "demo-group")
import org.apache.spark.streaming.kafka._
import net.liftweb.json.{DefaultFormats, Formats}
import net.liftweb.json._
val topicSet = Map(kafkaTopic -> 1)
val streaming = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](sparkStreamingContext, kafkaParam, topicSet, StorageLevel.MEMORY_AND_DISK)
streaming.map { case (id, tweet) => implicit val formats: Formats = DefaultFormats
(id, parse(tweet).extract[Tweet])
}.print()
sparkStreamingContext.start()
sparkStreamingContext.awaitTermination()
它将使DefaultFormats
类可序列化,Spark master将能够将implicit val formats
发送到所有工作节点。