我正在尝试编写自己的批量规范化代码。因此,我测试下面的代码。为了跟踪在线平均值和方差,我将它们作为参数传递给getsta()函数。但是,我发现" avg_mean"和" avg_variance"改变。虽然我可以在以后手动强制更改其名称,但似乎Tensorflow将每个名称视为一个单独的变量。
def getsta(x,avg_mean,avg_variance):
print('getsta start...')
decay=0.9
mean = tf.get_variable(
'mean', [1], tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
variance = tf.get_variable(
'howvariance', [1], tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32))
'''
if (avg_mean == 0.0):
avg_mean = tf.get_variable(
'avg_mean', [1], tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
if (avg_variance == 0.0):
avg_variance = tf.get_variable(
'avg_variance', [1], tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
'''
mean, variance = tf.nn.moments(x, [0], name='moments')
avg_mean -= (1.0 - decay) * (avg_mean - mean)
avg_variance -= (1.0 - decay) * (avg_variance - variance)
return x, mean, variance, avg_mean, avg_variance
def train():
x1 = tf.constant([1,2,3,4], tf.float32)
x2 = tf.constant([5,6,7,8], tf.float32)
x3 = tf.constant([1,3,5,7], tf.float32)
x4 = tf.constant([4,8,12,16], tf.float32)
with tf.variable_scope("AAA") as scopeA:
avg_mean1 = tf.get_variable(
'test1', [1], tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
avg_variance1 = tf.get_variable(
'test2', [1], tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
print([avg_mean1.name, avg_variance1.name])
y1, mean1, variance1, avg_mean1, avg_variance1 = getsta(x1,avg_mean1,avg_variance1)
print([avg_mean1.name, avg_variance1.name])
scopeA.reuse_variables()
print([avg_mean1.name, avg_variance1.name])
y1, mean1, variance1, avg_mean1, avg_variance1 = getsta(x2,avg_mean1,avg_variance1)
print([avg_mean1.name, avg_variance1.name])
avg_mean1 = tf.identity(avg_mean1, name='avg_mean')
avg_variance1 = tf.identity(avg_variance1, name='avg_variance')
print([avg_mean1.name, avg_variance1.name])
with tf.variable_scope("BBB") as scopeB:
avg_mean2 = tf.get_variable(
'test1', [1], tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
avg_variance2 = tf.get_variable(
'test2', [1], tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
print([avg_mean2.name, avg_variance2.name])
y2, mean2, variance2, avg_mean2, avg_variance2 = getsta(x3, avg_mean2, avg_variance2)
print([avg_mean2.name, avg_variance2.name])
scopeB.reuse_variables()
print([avg_mean2.name, avg_variance2.name])
y2, mean2, variance2, avg_mean2, avg_variance2 = getsta(x4, avg_mean2, avg_variance2)
print([avg_mean2.name, avg_variance2.name])
avg_mean2 = tf.identity(avg_mean2, name='avg_mean')
avg_variance2 = tf.identity(avg_variance2, name='avg_variance')
print([avg_mean2.name, avg_variance2.name])
saver = tf.train.Saver()
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
print(sess.run([y1, mean1, variance1, avg_mean1, avg_variance1]))
print(sess.run([y2, mean2, variance2, avg_mean2, avg_variance2]))
allVars = tf.global_variables()
values = sess.run(allVars)
for var, val in zip(allVars, values):
print(var.name, val)
saver.save(sess, "/tmp/test_EMA/var_save.ckpt")
运行上面的train()函数后,输出为
['AAA/test1:0', 'AAA/test2:0']
getsta start...
['AAA/sub_1:0', 'AAA/sub_3:0']
['AAA/sub_1:0', 'AAA/sub_3:0']
getsta start...
['AAA/sub_5:0', 'AAA/sub_7:0']
['AAA/avg_mean:0', 'AAA/avg_variance:0']
['BBB/test1:0', 'BBB/test2:0']
getsta start...
['BBB/sub_1:0', 'BBB/sub_3:0']
['BBB/sub_1:0', 'BBB/sub_3:0']
getsta start...
['BBB/sub_5:0', 'BBB/sub_7:0']
['BBB/avg_mean:0', 'BBB/avg_variance:0']
[array([ 5., 6., 7., 8.], dtype=float32), 6.5, 1.25, array([ 0.875], dtype=float32), array([ 0.23750001], dtype=float32)]
[array([ 4., 8., 12., 16.], dtype=float32), 10.0, 20.0, array([ 1.36000001], dtype=float32), array([ 2.45000005], dtype=float32)]
AAA/test1:0 [ 0.]
AAA/test2:0 [ 0.]
AAA/mean:0 [ 0.]
AAA/howvariance:0 [ 1.]
BBB/test1:0 [ 0.]
BBB/test2:0 [ 0.]
BBB/mean:0 [ 0.]
BBB/howvariance:0 [ 1.]
我有几个问题:
当我打印出所有变量时,为什么名称和值似乎都不正确,因为输出中的最后八行?我希望输出是
AAA/avg_mean:0 [0.875]
AAA/avg_variance:0 [0.23750001]
BBB/avg_mean:0 [1.36000001]
BBB/avg_variance:0 [2.45000005]
提前感谢您的帮助!
--------------------更新--------------------
我修改了我的代码,如下所示
def train():
x1 = tf.constant([1,2,3,4], tf.float32)
x2 = tf.constant([5,6,7,8], tf.float32)
x3 = tf.constant([1,3,5,7], tf.float32)
x4 = tf.constant([4,8,12,16], tf.float32)
with tf.variable_scope("AAA") as scopeA:
avg_mean1 = tf.get_variable(
'avg_mean', [1], tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
avg_variance1 = tf.get_variable(
'avg_variance', [1], tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
y1, mean1, variance1 = getsta(x1,avg_mean1,avg_variance1)
scopeA.reuse_variables()
y1, mean1, variance1 = getsta(x2,avg_mean1,avg_variance1)
print([avg_mean1.name, avg_variance1.name])
with tf.variable_scope("BBB") as scopeB:
avg_mean2 = tf.get_variable(
'avg_mean', [1], tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
avg_variance2 = tf.get_variable(
'avg_variance', [1], tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
y2, mean2, variance2 = getsta(x3, avg_mean2, avg_variance2)
scopeB.reuse_variables()
y2, mean2, variance2 = getsta(x4, avg_mean2, avg_variance2)
print([avg_mean2.name, avg_variance2.name])
saver = tf.train.Saver()
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
print(sess.run([y1, mean1, variance1, avg_mean1, avg_variance1]))
print(sess.run([y2, mean2, variance2, avg_mean2, avg_variance2]))
allVars = tf.global_variables()
values = sess.run(allVars)
for var, val in zip(allVars, values):
print(var.name, val)
saver.save(sess, "/tmp/test_EMA/var_save.ckpt")
现在变量'名字是固定的。但是,输出(变量'值)似乎不正确。输出
[array([ 5., 6., 7., 8.], dtype=float32), 6.5, 1.25, array([ 0.], dtype=float32), array([ 0.], dtype=float32)]
[array([ 4., 8., 12., 16.], dtype=float32), 10.0, 20.0, array([ 0.], dtype=float32), array([ 0.], dtype=float32)]
AAA/avg_mean:0 [ 0.]
AAA/avg_variance:0 [ 0.]
AAA/mean:0 [ 0.]
AAA/variance:0 [ 1.]
BBB/avg_mean:0 [ 0.]
BBB/avg_variance:0 [ 0.]
BBB/mean:0 [ 0.]
我应该如何修改我的代码才能获得正确的结果?谢谢。
答案 0 :(得分:0)
以下是您的代码中需要修复的问题:
1-在以下行中,您将avg_variance1
替换为operation
返回的getsta
。你不能这样做。当您创建变量avg_variance1
并将其传递给getsta
时,变量将在计算图中的任何位置更新,而TensorFlow将负责处理,您不需要明确地执行此操作。只要您指的是variable
name
,就可以了。 TensorFlow变量与常规Python变量不同。
y1, mean1, variance1, avg_mean1, avg_variance1 = getsta(x1,avg_mean1,avg_variance1)
(你需要为avg_mean1,avg_mean2等修复此问题)
2- avg_mean2
,avg_variance2
,avg_mean2
和avg_variance2
为Tensor
而非variable
。因此,它们不在您正在打印的variables
列表中。