我有三个部分的文件,我想用来制作Shiny app。
这是一个存储绘图功能的代码。
library(ggplot2)
library(tidyverse)
library(ggrepel)
#-------------------------
# Function
#-------------------------
plotit <- function (dat, x_thres, y_thres) {
dat["Significant"] <- ifelse((dat$wt > x_thres |
dat$mpg > y_thres ), 'NotSignif','Signif')
p <- ggplot(dat, aes(wt, mpg)) +
geom_point(alpha=0.8,size=2.75, aes(color=Significant)) +
scale_color_manual(values=c("#B94024","#7D8D87")) +
geom_vline(xintercept= x_thres, colour = '#B94024') +
geom_hline(yintercept=y_thres, colour = '#B94024') +
geom_text_repel(data=subset(dat, wt > x_thres | mpg > y_thres),
aes(wt,mpg,label=model),
box.padding = unit(0.35, "lines"),
point.padding = unit(0.3, "lines")
) +
theme(legend.position="none")
return(p)
}
#-------------------------
# Begin main code
#-------------------------
# I literally want to use file as input not
# default mtcars variable
infile <- "https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv"
dat <- read_delim(infile,delim=",", col_types = cols())
y_thres <- 25
x_thres <- 3
plotit(dat, x_thres, y_thres)
该函数基本上采用x-threshold和y-threshold 并制作如下情节:
然后我尝试构建了允许用户使用的Shiny应用程序
基于相同的输入数据滑过x阈值和y阈值
并调用plotit
函数。当它们滑动时,垂直的水平红线和标记点会相应地改变。
我的Shiny个应用文件是:
library(shiny)
# Define server logic for slider examples
function(input, output) {
# Reactive expression to compose a data frame containing all of
# the values
sliderValues <- reactive({
# Compose data frame
data.frame(
Name = c("X-threshold",
"Y-threshold"
),
Value = as.character(c(input$integer,
input$integer
)),
stringsAsFactors=FALSE)
})
# Show the values using an HTML table
output$values <- renderTable({
sliderValues()
})
}
library(shiny)
# Define UI for slider demo application
fluidPage(
# Application title
titlePanel("Sliders"),
# Sidebar with sliders that demonstrate various available
# options
sidebarLayout(
sidebarPanel(
# Simple integer interval
sliderInput("integer", "X-threshold",
min=3, max=10, value=1),
# Simple integer interval
sliderInput("integer", "Y-threshold",
min=10, max=35, value=1)
),
# Show a table summarizing the values entered
mainPanel(
tableOutput("values")
# How can I output the plot from coolplot.R here????
)
)
)
我的问题是如何从ui.R
和plot.R
进行DataSourceInitializer
导入功能
显示情节?
目前,Shiny在RStudio中看起来像这样(减去我的评论)。
答案 0 :(得分:2)
你想要的是什么?请确保您的滑块有唯一的名称
library(ggplot2)
library(tidyverse)
library(ggrepel)
library(shiny)
#-------------------------
# Function
#-------------------------
plotit <- function (dat, x_thres, y_thres) {
dat["Significant"] <- ifelse((dat$wt > x_thres |
dat$mpg > y_thres ), 'NotSignif','Signif')
p <- ggplot(dat, aes(wt, mpg)) +
geom_point(alpha=0.8,size=2.75, aes(color=Significant)) +
scale_color_manual(values=c("#B94024","#7D8D87")) +
geom_vline(xintercept= x_thres, colour = '#B94024') +
geom_hline(yintercept=y_thres, colour = '#B94024') +
geom_text_repel(data=subset(dat, wt > x_thres | mpg > y_thres),
aes(wt,mpg,label=model),
box.padding = unit(0.35, "lines"),
point.padding = unit(0.3, "lines")
) +
theme(legend.position="none")
return(p)
}
#-------------------------
# Begin main code
#-------------------------
# I literally want to use file as input not
# default mtcars variable
infile <- "https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv"
dat <- read_delim(infile,delim=",", col_types = cols())
y_thres <- 25
x_thres <- 3
plotit(dat, x_thres, y_thres)
ui <- shinyUI(
fluidPage(
# Application title
titlePanel("Sliders"),
# Sidebar with sliders that demonstrate various available
# options
sidebarLayout(
sidebarPanel(
# Simple integer interval
sliderInput("integer", "X-threshold",
min=3, max=10, value=1),
# Simple integer interval
sliderInput("integer2", "Y-threshold",
min=10, max=35, value=1)
),
# Show a table summarizing the values entered
mainPanel(
tableOutput("values"),
plotOutput("myplot")
# How can I output the plot from coolplot.R here????
)
)
)
)
server <- shinyServer(function(input, output, session) {
# Reactive expression to compose a data frame containing all of
# the values
sliderValues <- reactive({
# Compose data frame
data.frame(Name = c("X-threshold", "Y-threshold"),
Value = as.character(c(input$integer, input$integer2)),
stringsAsFactors=FALSE)
})
# Show the values using an HTML table
output$values <- renderTable({
sliderValues()
})
output$myplot <- renderPlot({
plotit(dat, input$integer, input$integer2)
})
})
shinyApp(ui = ui, server = server)
编辑:从文件中加载绘图功能
<强> coolplot.R 强>
library(ggplot2)
library(tidyverse)
library(ggrepel)
#-------------------------
# Function
#-------------------------
#-------------------------
# Begin main code
#-------------------------
# I literally want to use file as input not
# default mtcars variable
infile <- "https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv"
dat <- read_delim(infile,delim=",", col_types = cols())
plotit <- function (dat, x_thres, y_thres) {
dat["Significant"] <- ifelse((dat$wt > x_thres |
dat$mpg > y_thres ), 'NotSignif','Signif')
p <- ggplot(dat, aes(wt, mpg)) +
geom_point(alpha=0.8,size=2.75, aes(color=Significant)) +
scale_color_manual(values=c("#B94024","#7D8D87")) +
geom_vline(xintercept= x_thres, colour = '#B94024') +
geom_hline(yintercept=y_thres, colour = '#B94024') +
geom_text_repel(data=subset(dat, wt > x_thres | mpg > y_thres),
aes(wt,mpg,label=model),
box.padding = unit(0.35, "lines"),
point.padding = unit(0.3, "lines")
) +
theme(legend.position="none")
return(p)
}
闪亮的部分
library(shiny)
source("coolplot.R",local = TRUE)$value
ui <- shinyUI(
fluidPage(
# Application title
titlePanel("Sliders"),
# Sidebar with sliders that demonstrate various available
# options
sidebarLayout(
sidebarPanel(
# Simple integer interval
sliderInput("integer", "X-threshold",
min=3, max=10, value=1),
# Simple integer interval
sliderInput("integer2", "Y-threshold",
min=10, max=35, value=1)
),
# Show a table summarizing the values entered
mainPanel(
tableOutput("values"),
plotOutput("myplot")
# How can I output the plot from coolplot.R here????
)
)
)
)
server <- shinyServer(function(input, output, session) {
# Reactive expression to compose a data frame containing all of
# the values
# Add the source file of the plot if necessary
sliderValues <- reactive({
# Compose data frame
data.frame(Name = c("X-threshold", "Y-threshold"),
Value = as.character(c(input$integer, input$integer2)),
stringsAsFactors=FALSE)
})
# Show the values using an HTML table
output$values <- renderTable({
sliderValues()
})
output$myplot <- renderPlot({
plotit(dat, input$integer, input$integer2)
})
})
shinyApp(ui = ui, server = server)