我想找到两个经度和纬度点之间的距离。我正在尝试使用great circle distance。这是公式:
我不知道为什么但是我的程序无效。这是我得到的结果:
Change Angle: 0.00016244370761414
Earth Radius: 6371
RESULTS:
Correct Distance: 24.883 km
Computed Distance: 1.0349288612097
来源:
$latStart = 44.638;
$longStart = -63.587;
$latFinish = 44.644;
$longFinish = -63.597;
# Convert Input to Radians
$latStart = deg2Rad($latStart);
$longStart = deg2Rad($longStart);
$latFinish = deg2Rad($latFinish);
$longFinish = deg2Rad($longFinish);
# Because the Earth is not perfectly spherical, no single value serves as its
# natural radius. Distances from points on the surface to the center range from
# 6,353 km to 6,384 km (≈3,947–3,968 mi). Several different ways of modeling the
# Earth as a sphere each yield a convenient mean radius of 6371 km (≈3,959 mi).
# http://en.wikipedia.org/wiki/Earth_radius
$earthRadius = 6371;
# difference in Long/Lat
$latChange = $latFinish - $latStart;
$longChange = $longFinish - $longStart;
# haversine formula
# numerically stable for small distances
# http://en.wikipedia.org/wiki/Great-circle_distance
$changeAngle = 2 * asin(
sqrt(
pow(sin($latChange/2),2) +
cos($latStart) * cos($latFinish) * pow(sin($longChange/2),2)
)
);
echo "Change Angle: $changeAngle\n";
echo "Earth Radius: $earthRadius\n";
答案 0 :(得分:2)
让我们使用平面近似进行背面检查。纬度差为0.006°,经度差为0.01°,但乘以纬度余弦得到0.0075°。申请毕达哥拉斯:
>>> sqrt(0.006 ** 2 + 0.0075 ** 2)
0.0096046863561492727
大约是0.000167弧度,非常接近你的计算。 (甚至更多的背包检查:一个度数大约69英里,这有点超过100公里,所以0.01°应该超过1公里。)
所以我认为这是你所谓的“正确的距离”,这是错误的,而不是你的计算。
答案 1 :(得分:1)
你的方法松散地基于毕达哥拉斯定理 - 我总是以艰难的方式完成它,即类似的东西(实际上,我预先计算轴的值并将它们与数据一起存储在数据库中) :
$startXAxis = cos(deg2Rad($latStart)) * cos(deg2Rad($longStart));
$startYAxis = cos(deg2Rad($latStart)) * sin(deg2Rad($longStart));
$startZAxis = sin(deg2Rad($latStart));
$finishXAxis = cos(deg2Rad($latFinish)) * cos(deg2Rad($longFinish));
$finishYAxis = cos(deg2Rad($latFinish)) * sin(deg2Rad($longFinish));
$finishZAxis = sin(deg2Rad($latFinish));
$changeAngle = acos($startXAxis * $finishXAxis + $startYAxis * $finishYAxis + $startZAxis * $finishZAxis);
答案 2 :(得分:1)
您的公式与我的实施方式不同。不过我的是.NET,但是我已对它进行了单元测试,效果很好。
这是一个稍微重写的版本:http://megocode3.wordpress.com/2008/02/05/haversine-formula-in-c/
/// <summary>
/// Implementation of the Haversine formula
/// For calculating the distance between 2 points on a sphere
/// http://en.wikipedia.org/wiki/Haversine_formula
/// </summary>
public class Haversine
{
/// <summary>
/// Calculate the distance between 2 points in miles or kilometers
/// http://megocode3.wordpress.com/2008/02/05/haversine-formula-in-c/
///
/// This assumes sea level
/// </summary>
public double Distance(LatLon pos1, LatLon pos2, DistanceType type)
{
const double RADIUS_OF_EARTH_IN_MILES = 3963.1676;
const double RADIUS_OF_EARTH_IN_KILOMETERS = 6378.1;
//radius of the earth
double R = (type == DistanceType.Miles) ? RADIUS_OF_EARTH_IN_MILES : RADIUS_OF_EARTH_IN_KILOMETERS;
//Deltas
double dLat = ToRadian(pos2.Lat - pos1.Lat);
double dLon = ToRadian(pos2.Lon - pos1.Lon);
double a = Math.Sin(dLat/2)*Math.Sin(dLat/2) + Math.Cos(ToRadian(pos1.Lat))*Math.Cos(ToRadian(pos2.Lat)) * Math.Sin(dLon / 2) * Math.Sin(dLon / 2);
double c = 2 * Math.Asin(Math.Min(1, Math.Sqrt(a)));
double d = R*c;
return d;
}
/// <summary>
/// Convert to Radians.
/// </summary>
private double ToRadian(double val)
{
return (Math.PI / 180) * val;
}
}