类似于this question我正在运行异步强化学习算法,需要在多个线程中运行模型预测以更快地获得训练数据。我的代码基于GitHub上的DDPG-keras,其神经网络构建于Keras& Tensorflow。我的代码片段如下所示:
异步线程创建和加入:
for roundNo in xrange(self.param['max_round']):
AgentPool = [AgentThread(self.getEnv(), self.actor, self.critic, eps, self.param['n_step'], self.param['gamma'])]
for agent in AgentPool:
agent.start()
for agent in AgentPool:
agent.join()
代理线程代码
"""Agent Thread for collecting data"""
def __init__(self, env_, actor_, critic_, eps_, n_step_, gamma_):
super(AgentThread, self).__init__()
self.env = env_ # type: Environment
self.actor = actor_ # type: ActorNetwork
# TODO: use Q(s,a)
self.critic = critic_ # type: CriticNetwork
self.eps = eps_ # type: float
self.n_step = n_step_ # type: int
self.gamma = gamma_
self.data = {}
def run(self):
"""run behavior policy self.actor to collect experience data in self.data"""
state = self.env.get_state()
action = self.actor.model.predict(state[np.newaxis, :])[0]
action = np.maximum(np.random.normal(action, self.eps, action.shape), np.ones_like(action) * 1e-3)
运行这些代码时,我遇到了Tensorflow异常:
Using TensorFlow backend.
create_actor_network
Exception in thread Thread-1:
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/threading.py", line 801, in __bootstrap_inner
self.run()
File "/Users/niyan/code/routerRL/A3C.py", line 26, in run
action = self.actor.model.predict(state[np.newaxis, :])[0]
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/keras/engine/training.py", line 1269, in predict
self._make_predict_function()
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/keras/engine/training.py", line 798, in _make_predict_function
**kwargs)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/keras/backend/tensorflow_backend.py", line 1961, in function
return Function(inputs, outputs, updates=updates)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/keras/backend/tensorflow_backend.py", line 1919, in __init__
with tf.control_dependencies(self.outputs):
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 3583, in control_dependencies
return get_default_graph().control_dependencies(control_inputs)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 3314, in control_dependencies
c = self.as_graph_element(c)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2405, in as_graph_element
return self._as_graph_element_locked(obj, allow_tensor, allow_operation)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2484, in _as_graph_element_locked
raise ValueError("Tensor %s is not an element of this graph." % obj)
ValueError: Tensor Tensor("concat:0", shape=(?, 4), dtype=float32) is not an element of this graph.
那么如何使用经过训练的Keras模型(使用Tensorflow作为后端)在多个线程中同时进行预测?
4月2日更新: 我尝试过应对模型而不是重量,但是没有用:
for roundNo in xrange(self.param['max_round']):
for agent in self.AgentPool:
agent.syncModel(self.getEnv(), self.actor, self.critic, eps)
agent.start()
for agent in self.AgentPool:
agent.join()
def syncModel(self, env_, actor_, critic_, eps_):
"""synchronize A-C models before collecting data"""
# TODO copy env, actor, critic
self.env = env_ # shallow copy
self.actor.model.set_weights(actor_.model.get_weights()) # deep copy, by weights
self.critic.model.set_weights(critic_.model.get_weights()) # deep copy, by weights
self.eps = eps_ # shallow copy
self.data = {}
编辑: 在Github上看到这个jaara/AI-blog,似乎
model._make_predict_function() # have to initialize before threading
的工作原理。
作者对this issue进行了一些解释。有关进一步的讨论,请参阅this issue on Keras
答案 0 :(得分:1)
python 中的多线程不一定能更好地利用您的资源,因为 python 使用 global interpreter lock 并且一次只能运行一个本机线程。
在 python 中,通常你应该使用多处理来利用你的资源,但由于我们谈论的是 keras 模型,我不确定这样做是否正确。 在多个进程中加载多个模型有其自身的开销,您可以简单地增加批量大小,正如其他人已经指出的那样。
或者,如果您有一个繁重的预处理阶段,您可以在一个过程中预处理您的数据并在另一个过程中预测它们(尽管我怀疑这是否必要)。
答案 1 :(得分:0)
预测多个线程中的数据是一个坏主意。离线预测数据时,可以在batch_size
中使用更大的model.predict
,而在线预测数据时,可以使用tensorflow serving
。
答案 2 :(得分:0)
Keras不是线程安全的,要预测大批量,可以使用batch_size设置最大限制。 如果要部署到生产环境,理想的方法是转换模型权重tensorflow原型并使用tensorflow服务。
答案 3 :(得分:0)