我在python中有以下生成器。它接收的样本是一个由x行组成的数组,其中每行看起来像这样
['some\\path\\center.jpg', 'some\\path\\left.jpg', 'some\\path\\right.jpg', 'someNumber']
def generator(samples, batch_size):
num_samples = len(samples)
while 1: # Loop forever so the generator never terminates
shuffle(samples)
for offset in range(0, num_samples, batch_size):
batch_samples = samples[offset:offset+batch_size]
for batch_sample in batch_samples:
source_path = np.random.choice([batch_sample[0], batch_sample[1], batch_sample[2]])
filename = source_path.split(os.sep)[-1]
current_path = 'data20/IMG/' + filename
current_image = cv2.imread(current_path)
current_angle = float(batch_sample[3])
if source_path == line[1]:
current_angle += 0.2
elif source_path == line[2]:
current_angle -= 0.2
images.append(current_image)
angles.append(current_angle)
# trim image to only see section with road
X_train = np.array(images)
y_train = np.array(angles)
yield (X_train, y_train)
然后我有一些CNN,我使用具有给定功能的发生器训练网络
model.fit_generator(train_generator, samples_per_epoch=len(train_samples), validation_data=validation_generator, nb_val_samples=len(validation_samples), nb_epoch=5)
我的问题:为什么培训期间的时间会增加,因此需要更长的时间...导致批量大小的内存不足让我们说32?
答案 0 :(得分:0)
如Dref360所述,我不清楚发生器内的图像和角度。主要问题是我把
images = []
angles = []
在我的发电机之外,这导致每个周期都在增长,它们应该在我的发电机内部。以下是工作代码:
['some\\path\\center.jpg', 'some\\path\\left.jpg', 'some\\path\\right.jpg', 'someNumber']
def generator(samples, batch_size):
num_samples = len(samples)
while 1: # Loop forever so the generator never terminates
shuffle(samples)
for offset in range(0, num_samples, batch_size):
batch_samples = samples[offset:offset+batch_size]
images = []
angles = []
for batch_sample in batch_samples:
source_path = np.random.choice([batch_sample[0], batch_sample[1], batch_sample[2]])
filename = source_path.split(os.sep)[-1]
current_path = 'data20/IMG/' + filename
current_image = cv2.imread(current_path)
current_angle = float(batch_sample[3])
if source_path == line[1]:
current_angle += 0.2
elif source_path == line[2]:
current_angle -= 0.2
images.append(current_image)
angles.append(current_angle)
# trim image to only see section with road
X_train = np.array(images)
y_train = np.array(angles)
yield (X_train, y_train)
非常感谢到 Dref360 :D