我被要求使用说明创建一个重复算法:
将旧矢量表备份到临时矢量oldTable
删除旧表中的元素
获取新的表格大小
将表格扩展为新尺寸
将oldTable中的元素重新插入到展开的新表
中删除oldTable中的元素
Hash Table.h类:
#ifndef HASHTABLE_H
#define HASHTABLE_H
#include "Math.h"
// hash table storing class X objects using linear probing
template <class X>
class HashTable {
public:
// constructor sets the hash table size & load threshold
HashTable(int table_size, double load_threshold = 0.75);
// destructor
~HashTable() { for (int i = 0; i < Table.size(); i++) if (Table[i]) delete Table[i]; }
// search for object a in the table
size_t find(X& a); // size_t = unsigned int
// insert new object a in the table, return true if done
bool insert(X& a);
//function to return a new prime table size
size_t newTableSize();
//rehash func
void reHash();
private:
// the hash table & number of objects stored
vector<X*> Table;
size_t num_x;
// maximum load threshold
double LOAD_TH;
};
template <class X>
HashTable<X>::HashTable(int table_size, double load_threshold)
{
for (int i = 0; i < table_size; i++) Table.push_back(NULL);
num_x = 0;
LOAD_TH = load_threshold;
}
template <class X>
size_t HashTable<X>::newTableSize() {
bool found = true;
int newSize = 2 * Table.size() + 1; // = now odd because oldSize is a prime
do {
int x = sqrt(newSize);
for (int i = 3; i <= x; i += 2) {
if (newSize % i == 0) {
newSize = newSize + 2;
x = sqrt(newSize);
break;
}
else
{
found = true;
}
}
} while (!found);
return newSize;
}
template<class X>
void HashTable<X>::reHash() {
//Backup the old vector<X*> Table to a temporary vector<X*> oldTable
vector<X*> tempTable;
tempTable = Table;
//Delete the elements in the old Table
Table.clear();
//Obtain the new table size
int newPrimeSize = newTableSize();
//Expand Table to the new size
Table.resize(newPrimeSize);
//Reinsert elements from oldTable into the expanded new Table
//Table = tempTable;
//or method below??
for (int i = 0; i < tempTable.size; i++) {
if (tempTable[i] != NULL){
Table.insert(tempTable[i]);
}
}
//Delete the elements in the oldTable
tempTable.clear();
}
template <class X>
size_t HashTable<X>::find(X& a)
{
// calculate the hash index
size_t index = a.hash_index() % Table.size();
// search - find index of matching key or the 1st empty slot
while (Table[index] != NULL && Table[index]->get_key() != a.get_key())
index = (index + 1) % Table.size();
// retrieve matching value to a if found
if (Table[index] != NULL) a.set_value(Table[index]->get_value());
return index;
}
template <class X>
bool HashTable<X>::insert(X& a)
{
// calculate the load factor of the table
double load_factor = (double)num_x / (double)Table.size();
if (load_factor > LOAD_TH) {
// replace the following return by rehashing - practical work
return 0;
}
// search a in the able
size_t index = find(a);
// not found, create a new entry in the table
if (Table[index] == NULL) {
Table[index] = new X(a);
num_x++;
return 1;
}
// object already in table, do nothing
return 0;
}
#endif
测试类:
#include <iostream>
#include <vector>
#include <string>
#include <time.h>
#include "Math.h"
using namespace std;
#include "HashTable.h"
// a class of phone records
class PhoneDir {
public:
PhoneDir(string name, int number = -1)
: name(name), number(number) {};
string get_key() { return name; }
int get_value() { return number; }
void set_value(int num) { number = num; }
size_t hash_index(); // return hash index of key: name
private:
string name; // key
int number; // value
};
size_t PhoneDir::hash_index()
{
size_t hash_index = 0;
for (int i = 0; i < name.size(); i++) {
char c = name[i];
hash_index = 37 * hash_index + c;
}
return hash_index;
}
int main()
{
int oldSize = 5;
// store phone records in hash table with size 11
HashTable<PhoneDir> HTable(7);
HTable.insert(PhoneDir("Tom", 123456));
HTable.insert(PhoneDir("Sam", 346834));
HTable.insert(PhoneDir("Pete", 347980));
HTable.insert(PhoneDir("Jack", 328709));
HTable.insert(PhoneDir("David", 335566));
// serach using name for phone number over the hash table
char yn = 'y';
do {
//test function part 1
cout << " Test " << endl;
cout << HTable.newTableSize();
cout << "Whose number are you looking for? ";
string name; cin >> name;
// form enquiry and search
PhoneDir enquiry(name);
clock_t t0 = clock();
size_t index = HTable.find(enquiry);
clock_t t1 = clock();
cout << "index = " << index;
cout << ", name = " << enquiry.get_key();
cout << ", number = " << enquiry.get_value() << endl;
cout << "time taken = " << t1 - t0 << endl << endl;
cout << "Another (y/n)? "; cin >> yn;
} while (yn == 'y');
return 0;
}
我成功创建了&amp;测试了newTableSize功能&amp;现在我正在使用rehash算法函数。 向量的使用使我感到困惑,我对此不熟悉。 我在正确的轨道上吗?我的重新哈希算法的部分是否有效? 感谢
答案 0 :(得分:0)
最简单的方法之一是创建一个新的HashTable
并交换这两个。
HashTable<X>
std::swap(*this,new_hashTable);
如果您希望对代码进行最小化更改,
变化
Table.insert(tempTable[i]);
来
this->insert(*tempTable[i]);
可能有用。
不要忘记当前使用的rehash会产生碰撞,你需要处理这个。
答案 1 :(得分:0)
最好直接使用新大小构建tempTable向量,并在完成移动它到表向量时,因为它涉及较少的复制操作:
保存表格,清理,复制:
创建临时和移动:
操作越来越简单......