Hadoop MapReduce工作最高频率

时间:2017-03-29 07:09:05

标签: java hadoop

我正在尝试使用定义为here的基本字数。是否有可能当IntSumReducer执行context.write时,context.write可以传递给第二个reducer或输出类,它会将IntSumReducer给出的最终列表减少/更改为单个最大频率?

我对Hadoop / MapReduce和Java中的作业概念都很陌生,所以我不确定我究竟需要修改默认的WordCount以使其成为可能。我可以写第二个Reducer功能并将其放在同一个工作中吗?我该怎么办?我如何表示在IntSumReducer之后还有另一个减速器?

基础WordCount:

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

   public static class TokenizerMapper
   extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context
                ) throws IOException, InterruptedException {
  StringTokenizer itr = new StringTokenizer(value.toString());
  while (itr.hasMoreTokens()) {
    word.set(itr.nextToken());
    context.write(word, one);
  }
}
}

public static class IntSumReducer
   extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
                   Context context
                   ) throws IOException, InterruptedException {
  int sum = 0;
  for (IntWritable val : values) {
    sum += val.get();
  }
  result.set(sum);
  context.write(key, result);
     }
}

  public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}`

1 个答案:

答案 0 :(得分:0)

你正在寻找的东西在hadoop中称为rest,在将输出发送到最终的reducer类之前进行一些半缩减。有关详情,请点击here