data = pd.read_excel("/Users/madhavthaker/Downloads/Reduced_Car_Data.xlsx")
train = np.random.rand(len(data)) < 0.8
data_train = data[train]
data_test = data[~train]
x_train = data_train.ix[:,0:3].values
y_train = data_train.ix[:,-1].values
x_test = data_test.ix[:,0:3].values
y_test = data_test.ix[:,-1].values
y_label = tf.placeholder(shape=[None,1], dtype=tf.float32, name='y_label')
x = tf.placeholder(shape=[None,3], dtype=tf.float32, name='x')
W = tf.Variable(tf.random_normal([3,1]), name='weights')
b = tf.Variable(tf.random_normal([1]), name='bias')
y = tf.matmul(x,W) + b
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
summary_op = tf.summary.merge_all()
#Fit all training data
for epoch in range(1000):
sess.run(train, feed_dict={x: x_train, y_label: y_train})
# Display logs per epoch step
if (epoch+1) % display_step == 0:
c = sess.run(loss, feed_dict={x: x_train, y_label:y_train})
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))
print("Optimization Finished!")
training_cost = sess.run(loss, feed_dict={x: x_train, y_label: y_train})
print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
这是错误:
x---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-37-50102cbac823> in <module>()
6 #Fit all training data
7 for epoch in range(1000):
----> 8 sess.run(train, feed_dict={x: x_train, y_label: y_train})
9
10 # Display logs per epoch step
TypeError: unhashable type: 'numpy.ndarray'
以下是我输入的两个numpy数组的形状:
y_train.shape = (78,)
x_train.shape = (78, 3)
我不知道造成这种情况的原因。我的所有形状都匹配,我不应该有任何问题。如果您需要更多信息,请与我们联系。
修改:根据我对下面其中一个答案的评论,似乎我必须为占位符指定一个特定的大小。 None
并不令人满意。当我改变它并重新运行我的代码时,一切正常。仍然不太清楚为什么会这样。
答案 0 :(得分:6)
就我而言,问题是将输入参数命名为与占位符变量相同。当然,这会用输入变量替换tensorflow变量;导致feed_dict的键不同。
tensorflow变量是可清除的,但您的输入参数(np.ndarray)不是。因此,不可用的错误是您尝试将参数作为键而不是tensorflow变量传递的结果。一些代码可视化我想说的内容:
a = tf.placeholder(dtype=tf.float32, shape=[1,2,3])
b = tf.identity(a)
with tf.Session() as sess:
your_var = np.ones((1,2,3))
a = your_var
sess.run(b, feed_dict={a: a})
希望这可以帮助任何人在将来遇到这个问题!
答案 1 :(得分:5)
请仔细检查您输入的数据类型“x_train / y_train”以及由'tf.placeholder(...)'定义的张量“x / y_label”
我遇到了同样的问题。原因是我的代码中的x_train是“np。 float64 ”,但我在tf.placeholder()中定义的是tf。 float32 。日期类型float64和float32不匹配。
答案 2 :(得分:3)
我认为问题在于定义词典。字典键必须是“可散列类型”,例如数字,字符串或元组很常见。列表或数组不起作用:
In [256]: {'x':np.array([1,2,3])}
Out[256]: {'x': array([1, 2, 3])}
In [257]: x=np.array([1,2,3])
In [258]: {x:np.array([1,2,3])}
...
TypeError: unhashable type: 'numpy.ndarray'
我不知道张量流是否足以知道它们是什么:
y_label = tf.placeholder(shape=[None,1], dtype=tf.float32, name='y_label')
x = tf.placeholder(shape=[None,3], dtype=tf.float32, name='x')
错误表明它们是numpy数组,而不是字符串。 x
是否有name
属性?
或者字典应该指定为:
{'x': x_train, 'y_label': y_train}
答案 3 :(得分:0)
奇怪,我也有这个问题。在我关闭python shell并从文件中运行代码后,即使在shell中也没有成功重现它(它只是没有错误)。