向Shiny app

时间:2017-03-28 20:06:20

标签: r plot ggplot2 shiny data-visualization

我正在制作一个Shiny应用程序,当我走的时候,我一直在以随意的方式添加数字和表格。我希望有一个更好的框架,以便我可以灵活地将反应数字和表格添加到输出中,因为它会进一步发展。

目前我一直在使用tabPanel和fluidrow添加额外的汇总表和第二个图。但是我很难适应这个。例如,我目前生成3个图,但一次只能绘制2个图。谁能告诉我一个修改代码的方法来显示所有三个图(distPlot1,distPlot2,distPlot3)和同一页面上的汇总表?理想情况下,将来添加其他表格和图表很简单。

提前谢谢。

我目前的代码如下。

ui.R

library(reshape2)
library(shiny)
library(ggplot2)
# Define UI for application that draws a histogram
fluidPage(

  # Application title
  titlePanel("Mutation Probability"),

  # Sidebar with a slider input for the number of bins
  sidebarLayout(
    sidebarPanel(
      sliderInput("x", "Probability of mutation (per bp):", 
                  min=1/1000000000000, max=1/1000, value=1/10000000),

      sliderInput("y", "Size of region (bp):", 
                  min = 10, max = 10000, value = 1000, step= 100),

      sliderInput("z", "Number of samples:", 
                  min = 1, max = 100000, value = 1000, step= 10)

    ),

    # Show a plot of the generated distribution
    mainPanel(
      tabsetPanel(
        tabPanel("Plot",
          fluidRow(
            splitLayout(cellWidths = c("50%", "50%"), plotOutput("distPlot1"), plotOutput("distPlot3"), plotOutput("distPlot3)"))
          )),
        tabPanel("Summary",  verbatimTextOutput("summary"))
      )
    )
  )
)

server.R

server <- function(input, output) {

  mydata <- reactive({
    x <- input$x
    y <- input$y
    z <- input$z
    Muts <- as.data.frame(rpois(100,(x*y*z)))
    Muts
  })


  output$distPlot1 <- renderPlot({
    Muts <- mydata()
    ggplot(Muts, aes(Muts)) + geom_density() +xlab("Observed variants")
  })

  output$distPlot2 <-renderPlot({
    Muts <- mydata()
    ggplot(Muts, aes(Muts)) + geom_histogram() + xlab("Observed variants")
  })
  #get a boxplot working
  output$distPlot3 <-renderPlot({
    Muts <- mydata()
    ggplot(data= melt(Muts), aes(variable, value)) + geom_boxplot() + xlab("Observed variants")
  })

  output$summary <- renderPrint({
    Muts <- mydata()
    summary(Muts)
  })


}

1 个答案:

答案 0 :(得分:2)

我喜欢使用grid.arrange包或gridExtra包中的cowplot工具在服务器中布局图形 - 它们提供了大量的布局灵活性。例如:

library(reshape2)
library(shiny)
library(ggplot2)
library(gridExtra)
# Define UI for application that draws a histogram

u <- fluidPage(

  # Application title
  titlePanel("Mutation Probability"),

  # Sidebar with a slider input for the number of bins
  sidebarLayout(
    sidebarPanel(
      sliderInput("x", "Probability of mutation (per bp):", 
                  min=1/1000000000000, max=1/1000, value=1/10000000),

      sliderInput("y", "Size of region (bp):", 
                  min = 10, max = 10000, value = 1000, step= 100),

      sliderInput("z", "Number of samples:", 
                  min = 1, max = 100000, value = 1000, step= 10)

    ),

    # Show a plot of the generated distribution
    mainPanel(
      tabsetPanel(
        tabPanel("Plot",
                 fluidRow(
                   plotOutput("distPlot4"),
                   verbatimTextOutput("summary"))
                 )),
        tabPanel("Summary",  verbatimTextOutput("summary1"))
      )
    )
  )
)
s <- function(input, output) {

  mydata <- reactive({
    x <- input$x
    y <- input$y
    z <- input$z
    Muts <- as.data.frame(rpois(100,(x*y*z)))
    Muts
  })
  output$distPlot4 <- renderPlot({
    Muts <- mydata()
    p1 <- ggplot(Muts, aes(Muts)) + geom_density() +xlab("Observed variants")
    p2 <- ggplot(Muts, aes(Muts)) + geom_histogram() + xlab("Observed variants")
    p3 <- ggplot(data= melt(Muts), aes(variable, value)) + geom_boxplot() + xlab("Observed variants")
    grid.arrange(p1,p2,p3, ncol=3,widths = c(2,1,1))
  })
  output$summary <- renderPrint({
    Muts <- mydata()
    summary(Muts)
  })
}
shinyApp(u,s)

产生:

enter image description here

对于汇总表,我只是将它们一个接一个地添加到底部,我认为你可以做的其他事情并不多。