我正在制作一个Shiny应用程序,当我走的时候,我一直在以随意的方式添加数字和表格。我希望有一个更好的框架,以便我可以灵活地将反应数字和表格添加到输出中,因为它会进一步发展。
目前我一直在使用tabPanel和fluidrow添加额外的汇总表和第二个图。但是我很难适应这个。例如,我目前生成3个图,但一次只能绘制2个图。谁能告诉我一个修改代码的方法来显示所有三个图(distPlot1,distPlot2,distPlot3)和同一页面上的汇总表?理想情况下,将来添加其他表格和图表很简单。
提前谢谢。
我目前的代码如下。
ui.R
library(reshape2)
library(shiny)
library(ggplot2)
# Define UI for application that draws a histogram
fluidPage(
# Application title
titlePanel("Mutation Probability"),
# Sidebar with a slider input for the number of bins
sidebarLayout(
sidebarPanel(
sliderInput("x", "Probability of mutation (per bp):",
min=1/1000000000000, max=1/1000, value=1/10000000),
sliderInput("y", "Size of region (bp):",
min = 10, max = 10000, value = 1000, step= 100),
sliderInput("z", "Number of samples:",
min = 1, max = 100000, value = 1000, step= 10)
),
# Show a plot of the generated distribution
mainPanel(
tabsetPanel(
tabPanel("Plot",
fluidRow(
splitLayout(cellWidths = c("50%", "50%"), plotOutput("distPlot1"), plotOutput("distPlot3"), plotOutput("distPlot3)"))
)),
tabPanel("Summary", verbatimTextOutput("summary"))
)
)
)
)
server.R
server <- function(input, output) {
mydata <- reactive({
x <- input$x
y <- input$y
z <- input$z
Muts <- as.data.frame(rpois(100,(x*y*z)))
Muts
})
output$distPlot1 <- renderPlot({
Muts <- mydata()
ggplot(Muts, aes(Muts)) + geom_density() +xlab("Observed variants")
})
output$distPlot2 <-renderPlot({
Muts <- mydata()
ggplot(Muts, aes(Muts)) + geom_histogram() + xlab("Observed variants")
})
#get a boxplot working
output$distPlot3 <-renderPlot({
Muts <- mydata()
ggplot(data= melt(Muts), aes(variable, value)) + geom_boxplot() + xlab("Observed variants")
})
output$summary <- renderPrint({
Muts <- mydata()
summary(Muts)
})
}
答案 0 :(得分:2)
我喜欢使用grid.arrange
包或gridExtra
包中的cowplot
工具在服务器中布局图形 - 它们提供了大量的布局灵活性。例如:
library(reshape2)
library(shiny)
library(ggplot2)
library(gridExtra)
# Define UI for application that draws a histogram
u <- fluidPage(
# Application title
titlePanel("Mutation Probability"),
# Sidebar with a slider input for the number of bins
sidebarLayout(
sidebarPanel(
sliderInput("x", "Probability of mutation (per bp):",
min=1/1000000000000, max=1/1000, value=1/10000000),
sliderInput("y", "Size of region (bp):",
min = 10, max = 10000, value = 1000, step= 100),
sliderInput("z", "Number of samples:",
min = 1, max = 100000, value = 1000, step= 10)
),
# Show a plot of the generated distribution
mainPanel(
tabsetPanel(
tabPanel("Plot",
fluidRow(
plotOutput("distPlot4"),
verbatimTextOutput("summary"))
)),
tabPanel("Summary", verbatimTextOutput("summary1"))
)
)
)
)
s <- function(input, output) {
mydata <- reactive({
x <- input$x
y <- input$y
z <- input$z
Muts <- as.data.frame(rpois(100,(x*y*z)))
Muts
})
output$distPlot4 <- renderPlot({
Muts <- mydata()
p1 <- ggplot(Muts, aes(Muts)) + geom_density() +xlab("Observed variants")
p2 <- ggplot(Muts, aes(Muts)) + geom_histogram() + xlab("Observed variants")
p3 <- ggplot(data= melt(Muts), aes(variable, value)) + geom_boxplot() + xlab("Observed variants")
grid.arrange(p1,p2,p3, ncol=3,widths = c(2,1,1))
})
output$summary <- renderPrint({
Muts <- mydata()
summary(Muts)
})
}
shinyApp(u,s)
产生:
对于汇总表,我只是将它们一个接一个地添加到底部,我认为你可以做的其他事情并不多。