我要问的是标题有点复杂。我做了这个例子来向你展示我的问题。以下是示例表:
df = pd.DataFrame({'Number': [1,2,3,4,5,6,7,8,9], 'Col1':['a','b','c','d','e','f','g','h','i']})
下一步是提取df ['Number']并出于某种原因运行迭代。 number= [i*i for i in df['Number']]
输出为[1, 4, 9, 16, 25, 36, 49, 64, 81]
现在我有一个变量'number',这是一个列表。
现在关键的一步是我必须重新组合这个列表。假设数字小于40
number1 = [i for i in number if i < 40]
number2 = [i for i in number if i > 40]
好的,我想要的关键步骤是将number1和number2添加到df,但预期的最终输出是这样的:
也就是说,添加一个新列'Type',这两个新变量必须与索引匹配,内容为'number1'和'number2',但不是'1,4,9 ... 81'。
答案 0 :(得分:3)
我认为boolean mask
需要numpy.where
:
print (df.Number.pow(2) < 40)
0 True
1 True
2 True
3 True
4 True
5 True
6 False
7 False
8 False
Name: Number, dtype: bool
df['Type'] = np.where(df.Number.pow(2) < 40, 'number1', 'number2')
#same as
#df['Type'] = np.where(df.Number ** 2 < 40, 'number1', 'number2')
#another solution
#df['Type'] = np.where(df.Number.pow(2).lt(40), 'number1', 'number2')
print (df)
Col1 Number Type
0 a 1 number1
1 b 2 number1
2 c 3 number1
3 d 4 number1
4 e 5 number1
5 f 6 number1
6 g 7 number2
7 h 8 number2
8 i 9 number2
计时 - numpy.where
最快:
df = pd.DataFrame({'Number': [1,2,3,4,5,6,7,8,9], 'Col1':['a','b','c','d','e','f','g','h','i']})
#[9000 rows x 5 columns]
df = pd.concat([df]*1000).reset_index(drop=True)
df['Type'] = np.where(df.Number.pow(2).lt(40), 'number1', 'number2')
df['Type1'] = 'number' + (1 + ((df.Number**2)>40).astype(int)).astype(str)
# Rule to produce new values
def f(row):
if row['Number']**2 > 40:
val = 'Number2'
else:
val = 'Number1'
return val
df['Type2'] = df.apply(f, axis=1)
#print (df)
In [218]: %timeit df['Type'] = np.where(df.Number.pow(2).lt(40), 'number1', 'number2')
1000 loops, best of 3: 1.63 ms per loop
In [219]: %timeit df['Type1'] = 'number' + (1 + ((df.Number**2)>40).astype(int)).astype(str)
100 loops, best of 3: 13.5 ms per loop
In [220]: %timeit df['Type2'] = df.apply(f, axis=1)
10 loops, best of 3: 127 ms per loop
编辑:
我创建帮助列以便更好地理解比较:
df['pow'] = df.Number.pow(2)
df['comaping val'] = 40
df['val'] = df.Number.pow(2).lt(40)
print (df)
Col1 Number pow comaping val val
0 a 1 1 40 True
1 b 2 4 40 True
2 c 3 9 40 True
3 d 4 16 40 True
4 e 5 25 40 True
5 f 6 36 40 True
6 g 7 49 40 False
7 h 8 64 40 False
8 i 9 81 40 False
答案 1 :(得分:2)
这是我的创意方法:
数据:强>
In [23]: df
Out[23]:
Col1 Number
0 a 1
1 b 2
2 c 3
3 d 4
4 e 5
5 f 6
6 g 7
7 h 8
8 i 9
<强>解决方案:强>
In [24]: df['Type'] = 'number' + (1 + ((df.Number**2)>40).astype(int)).astype(str)
<强>结果:强>
In [25]: df
Out[25]:
Col1 Number Type
0 a 1 number1
1 b 2 number1
2 c 3 number1
3 d 4 number1
4 e 5 number1
5 f 6 number1
6 g 7 number2
7 h 8 number2
8 i 9 number2
<强>解释强>
In [29]: ((df.Number**2)>40).astype(int)
Out[29]:
0 0
1 0
2 0
3 0
4 0
5 0
6 1
7 1
8 1
Name: Number, dtype: int32
In [30]: 1 + ((df.Number**2)>40).astype(int)
Out[30]:
0 1
1 1
2 1
3 1
4 1
5 1
6 2
7 2
8 2
Name: Number, dtype: int32
答案 2 :(得分:1)
制作自定义功能,然后在pandas.apply
import pandas as pd
# Rule to produce new values
def f(row):
if row['Number']**2 > 40:
val = 'Number2'
else:
val = 'Number1'
return val
df = pd.DataFrame({'Number': [1,2,3,4,5,6,7,8,9], 'Col1':['a','b','c','d','e','f','g','h','i']})
# Apply the function to construct new column
df['Type'] = df.apply(f, axis=1)
print (df)
输出:
Col1 Number Type
0 a 1 Number1
1 b 2 Number1
2 c 3 Number1
3 d 4 Number1
4 e 5 Number1
5 f 6 Number1
6 g 7 Number2
7 h 8 Number2
8 i 9 Number2