Tensorflow中的张量乘法

时间:2017-03-28 10:38:54

标签: python numpy matrix tensorflow matrix-multiplication

我正在尝试在NumPy / Tensorflow中执行张量乘法。

我有3个张量 - A (M X h), B (h X N X s), C (s X T)

我认为A X B X C应该产生张量D (M X N X T)

这里是代码(使用numpy和tensorflow)。

M = 5
N = 2
T = 3
h = 2
s = 3
A_np = np.random.randn(M, h)
C_np = np.random.randn(s, T)
B_np = np.random.randn(h, N, s)

A_tf = tf.Variable(A_np)
C_tf = tf.Variable(C_np)
B_tf = tf.Variable(B_np)

# Tensorflow
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print sess.run(A_tf)
    p = tf.matmul(A_tf, B_tf)
    sess.run(p)

这会返回以下错误:

ValueError: Shape must be rank 2 but is rank 3 for 'MatMul_2' (op: 'MatMul') with input shapes: [5,2], [2,2,3].

如果我们只尝试使用numpy矩阵进行乘法运算,我们会得到以下错误:

np.multiply(A_np, B_np)

ValueError: operands could not be broadcast together with shapes (5,2) (2,2,3)

但是,我们可以使用np.tensordot,如下所示:

np.tensordot(np.tensordot(A_np, B_np, axes=1), C_np, axes=1)

TensorFlow中是否有相同的操作?

答案

在numpy中,我们会这样做:

ABC_np = np.tensordot(np.tensordot(A_np, B_np, axes=1), C_np, axes=1)

在tensorflow中,我们会这样做:

AB_tf = tf.tensordot(A_tf, B_tf,axes = [[1], [0]])
AB_tf_C_tf = tf.tensordot(AB_tf, C_tf, axes=[[2], [0]])

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    ABC_tf = sess.run(AB_tf_C_tf)

np.allclose(ABC_np, ABC_tf)返回True

1 个答案:

答案 0 :(得分:6)

尝试

tf.tensordot(A_tf, B_tf,axes = [[1], [0]])

例如:

x=tf.tensordot(A_tf, B_tf,axes = [[1], [0]])
x.get_shape()
TensorShape([Dimension(5), Dimension(2), Dimension(3)])

以下是tensordot documentation,这是相关的github repository