>>> p1.head()
StreamId Timestamp SeqNum
0 3 1490250116391063414 1158
1 3 1490250116391348339 3600
2 3 1490250116391542829 3600
3 3 1490250116391577184 1437
4 3 1490250116392819426 1389
>>> oss.head()
OrderID Symbol Stream SeqNo
0 5000000 AXBANK 3 1158
1 5000001 AXBANK 6 1733
2 5000002 AXBANK 6 1244
3 5000003 AXBANK 6 1388
4 5000004 AXBANK 3 1389
如何使用2个属性作为键(SeqNum和StreamId)
进行合并>>> merge
OrderID Symbol Stream SeqNo Timestamp
0 5000000 AXBANK 3 1158 1490250116391063414
1 5000001 AXBANK 6 1733 NaN
2 5000002 AXBANK 6 1244 NaN
3 5000003 AXBANK 6 1388 NaN
4 5000004 AXBANK 3 1389 1490250116392819426
我尝试使用
oss['Time1'] = oss['SeqNo'].map.((p1.set_index('SeqNum')['Timestamp']))
但我需要将两者(SeqNum-SeqNo& Stream-StreamId)作为键包括在内 我知道如果我在两个数据帧中重命名列名并使用合并但我想避免这种情况,这可能很容易。我应该使用类似通用的东西(采用这个数据帧,将THESE列映射到另一个数据帧中的那些列并获取所需的库存)
答案 0 :(得分:4)
使用join
oss.join(p1.set_index(['StreamId', 'SeqNum']), on=['Stream', 'SeqNo'])
OrderID Symbol Stream SeqNo Timestamp
0 5000000 AXBANK 3 1158 1.490250e+18
1 5000001 AXBANK 6 1733 NaN
2 5000002 AXBANK 6 1244 NaN
3 5000003 AXBANK 6 1388 NaN
4 5000004 AXBANK 3 1389 1.490250e+18
答案 1 :(得分:2)
print (pd.merge(oss, p1, left_on=['Stream','SeqNo'],
right_on=['StreamId','SeqNum'],how='left')
.drop(['StreamId','SeqNum'], axis=1))
OrderID Symbol Stream SeqNo Timestamp
0 5000000 AXBANK 3 1158 1.490250e+18
1 5000001 AXBANK 6 1733 NaN
2 5000002 AXBANK 6 1244 NaN
3 5000003 AXBANK 6 1388 NaN
4 5000004 AXBANK 3 1389 1.490250e+18
另一个rename
列的解决方案:
d = {'Stream':'StreamId','SeqNo':'SeqNum'}
print (pd.merge(oss.rename(columns=d), p1, how='left'))
OrderID Symbol StreamId SeqNum Timestamp
0 5000000 AXBANK 3 1158 1.490250e+18
1 5000001 AXBANK 6 1733 NaN
2 5000002 AXBANK 6 1244 NaN
3 5000003 AXBANK 6 1388 NaN
4 5000004 AXBANK 3 1389 1.490250e+18