Tensorflow未显示"已成功打开&所以当地的CUDA图书馆"

时间:2017-03-28 02:37:05

标签: python tensorflow bazel

我将tensorflow配置为在我的GPU(GeForce 840M)上使用CUDA支持,但与我之前使用的CPU相比,这些程序的运行速度相当。另外,当我运行程序时,得到任何类型的消息已成功打开的CUDA库。相反,当我运行任何tensorflow程序时,这就是我在日志中得到的结果:

python Neuralnet.py 
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting /tmp/data/train-images-idx3-ubyte.gz
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Extracting /tmp/data/train-labels-idx1-ubyte.gz
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
2017-03-28 07:53:57.979382: W tensorflow/core/platform/cpu_feature_guard.cc:45]
    The TensorFlow library wasn't compiled to use SSE4.1 instructions, 
    but these are available on your machine and could speed up CPU computations.
2017-03-28 07:53:57.979413: W tensorflow/core/platform/cpu_feature_guard.cc:45]
    The TensorFlow library wasn't compiled to use SSE4.2 instructions, 
    but these are available on your machine and could speed up CPU computations.
2017-03-28 07:53:57.979431: W tensorflow/core/platform/cpu_feature_guard.cc:45] 
    The TensorFlow library wasn't compiled to use AVX instructions, 
    but these are available on your machine and could speed up CPU computations.
2017-03-28 07:53:57.979438: W tensorflow/core/platform/cpu_feature_guard.cc:45] 
    The TensorFlow library wasn't compiled to use AVX2 instructions, 
    but these are available on your machine and could speed up CPU computations.
2017-03-28 07:53:57.979447: W tensorflow/core/platform/cpu_feature_guard.cc:45] 
    The TensorFlow library wasn't compiled to use FMA instructions, 
    but these are available on your machine and could speed up CPU computations.
2017-03-28 07:53:58.233876: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:901] 
    successful NUMA node read from SysFS had negative value (-1),
    but there must be at least one NUMA node, so returning NUMA node zero
2017-03-28 07:53:58.234333: I tensorflow/core/common_runtime/gpu/gpu_device.cc:887] 
Found device 0 with properties: 
name: GeForce 840M
major: 5 minor: 0 memoryClockRate (GHz) 1.124
pciBusID 0000:08:00.0
Total memory: 1.96GiB
Free memory: 1.75GiB
2017-03-28 07:53:58.234362: I tensorflow/core/common_runtime/gpu/gpu_device.cc:908] DMA: 0 
2017-03-28 07:53:58.234372: I tensorflow/core/common_runtime/gpu/gpu_device.cc:918] 0:   Y 
2017-03-28 07:53:58.234388: I tensorflow/core/common_runtime/gpu/gpu_device.cc:977] 
Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce 840M, pci bus id: 0000:08:00.0)
('Epoch', 0, 'completed out of', 15, 'loss:', 115374329.04653475)

等程序开始运行但根据我的期望它没有更快地运行。我从官方文档中安装了CUDA,但是我没有重置git master head,因为它创建了问题,并且在通过bazel构建时使用了bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package提供的相同优化标记。

1 个答案:

答案 0 :(得分:0)

您是否使用nvidia-smi来判断您是否安装了正确的cuda驱动程序并且您的gpu对系统是否可见?

在TF中,您可以设置log_device_placement选项以了解是否将任何操作分配给GPU。