所以,我一直在关注这个网站上的Mapreduce python代码(http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/),该代码从文本文件中返回一个单词计数(即单词及其在文本中出现的次数) 。但是,我想知道如何返回最大发生的单词。映射器和缩减器如下 -
#Mapper
import sys
# input comes from STDIN (standard input)
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# split the line into words
words = line.split()
# increase counters
for word in words:
# write the results to STDOUT (standard output);
# what we output here will be the input for the
# Reduce step, i.e. the input for reducer.py
#
# tab-delimited; the trivial word count is 1
print '%s\t%s' % (word, 1)
#Reducer
from operator import itemgetter
import sys
current_word = None
current_count = 0
word = None
# input comes from STDIN
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# parse the input we got from mapper.py
word, count = line.split('\t', 1)
# convert count (currently a string) to int
try:
count = int(count)
except ValueError:
# count was not a number, so silently
# ignore/discard this line
continue
# this IF-switch only works because Hadoop sorts map output
# by key (here: word) before it is passed to the reducer
if current_word == word:
current_count += count
else:
if current_word:
# write result to STDOUT
print '%s\t%s' % (current_word, current_count)
current_count = count
current_word = word
# do not forget to output the last word if needed!
if current_word == word:
print '%s\t%s' % (current_word, current_count)
所以,我知道我需要在减速器的末尾添加一些东西,但我还不完全确定是什么。
答案 0 :(得分:1)
您只需要设置一个缩减器来聚合所有值(-numReduceTasks 1
)
这个你的简化应该是这样的:
max_count = 0
max_word = None
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# parse the input we got from mapper.py
word, count = line.split('\t', 1)
# convert count (currently a string) to int
try:
count = int(count)
except ValueError:
# count was not a number, so silently
# ignore/discard this line
continue
# this IF-switch only works because Hadoop sorts map output
# by key (here: word) before it is passed to the reducer
if current_word == word:
current_count += count
else:
# check if new word greater
if current_count > max_count:
max_count= current_count
max_word = current_word
current_count = count
current_word = word
# do not forget to check last word if needed!
if current_count > max_count:
max_count= current_count
max_word = current_word
print '%s\t%s' % (max_word, max_count)
但是只有一个reducer你会失去并行化,所以如果你在第一个之后运行这个工作可能会更快,而不是。这样,您的映射器将与reducer相同。