我面临一个GPU扭矩分配的奇怪问题。
我在一台拥有两台NVIDIA GTX Titan X GPU的机器上运行Torque 6.1.0。我正在使用pbs_sched进行调度。 nvidia-smi休息时的输出如下:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.39 Driver Version: 375.39 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX TIT... Off | 0000:03:00.0 On | N/A |
| 22% 40C P8 15W / 250W | 0MiB / 12204MiB | 0% E. Process |
+-------------------------------+----------------------+----------------------+
| 1 GeForce GTX TIT... Off | 0000:04:00.0 Off | N/A |
| 22% 33C P8 14W / 250W | 0MiB / 12207MiB | 0% E. Process |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
我有一个简单的测试脚本来评估GPU分配如下:
#PBS -S /bin/bash
#PBS -l nodes=1:ppn=1:gpus=1:reseterr:exclusive_process
echo "CUDA_VISIBLE_DEVICES: $CUDA_VISIBLE_DEVICES"
~/test/NVIDIA_CUDA-8.0_Samples/bin/x86_64/linux/release/deviceQuery
deviceQuery是CUDA附带的实用程序。当我从命令行运行它时,它正确找到两个GPU。当我从命令行限制到一个设备时......
CUDA_VISIBLE_DEVICES=0 ~/test/NVIDIA_CUDA-8.0_Samples/bin/x86_64/linux/release/deviceQuery
#or
CUDA_VISIBLE_DEVICES=1 ~/test/NVIDIA_CUDA-8.0_Samples/bin/x86_64/linux/release/deviceQuery
...它也正确找到一个或另一个GPU。
当我使用qsub将test.sh提交到队列时,并且当没有其他作业正在运行时,它再次正常工作。这是输出:
CUDA_VISIBLE_DEVICES: 0
~/test/NVIDIA_CUDA-8.0_Samples/bin/x86_64/linux/release/deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GTX TITAN X" CUDA Driver Version / Runtime Version 8.0 / 8.0 CUDA Capability Major/Minor version number: 5.2 Total amount of global memory: 12204 MBytes (12796887040 bytes) (24) Multiprocessors, (128) CUDA Cores/MP: 3072 CUDA Cores GPU Max Clock rate: 1076 MHz (1.08 GHz) Memory Clock rate: 3505 Mhz Memory Bus Width: 384-bit L2 Cache Size: 3145728 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Disabled Device supports Unified Addressing (UVA): Yes Device PCI Domain ID / Bus ID / location ID: 0 / 3 / 0 Compute Mode:
< Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GTX TITAN X Result = PASS
但是,如果作业已在gpu0上运行(即,如果它被分配了CUDA_VISIBLE_DEVICES = 1),则作业找不到任何GPU。输出:
CUDA_VISIBLE_DEVICES: 1
~/test/NVIDIA_CUDA-8.0_Samples/bin/x86_64/linux/release/deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
cudaGetDeviceCount returned 38
-> no CUDA-capable device is detected
Result = FAIL
任何人都知道这里发生了什么?
答案 0 :(得分:0)
我想我已经解决了自己的问题,但不幸的是我一次尝试了两件事。我不想回去确认哪个解决了这个问题。它是以下之一:
在构建之前从Torque的配置脚本中删除--enable-cgroups选项。
在Torque安装过程中运行以下步骤:
制作套餐
sh torque-package-server-linux-x86_64.sh --install
sh torque-package-mom-linux-x86_64.sh --install
sh torque-package-clients-linux-x86_64.sh --install
对于第二个选项,我知道这些步骤已在Torque安装说明中正确记录。但是,我有一个简单的设置,我只有一个节点(计算节点和服务器是同一台机器)。我认为'make install'应该执行包安装为该单个节点执行的所有操作,但也许我错了。