我目前正在尝试更新Keras 2.0的this densenet implementation。一切正常,除了
make
我把它改成了
from keras.layers import Input, merge
[...]
concat_axis = 1 if K.image_dim_ordering() == "th" else -1
feature_list = [x]
for i in range(nb_layers):
x = conv_block(x, growth_rate, bottleneck, dropout_rate, weight_decay)
feature_list.append(x)
x = merge(feature_list, mode='concat', concat_axis=concat_axis)
nb_filter += growth_rate
return x, nb_filter
但是这给了
from keras.layers import Input, concatenate
[...]
feature_list = [x]
for i in range(nb_layers):
x = conv_block(x, growth_rate, bottleneck, dropout_rate, weight_decay)
feature_list.append(x)
x = concatenate(feature_list, axis=concat_axis)
nb_filter += growth_rate
return x, nb_filter
我该如何解决这个问题?
答案 0 :(得分:0)
这是通过https://github.com/fchollet/keras/commit/c2321e61e1732f7a27841eca36cdaf34ed5d26dd确定的。
在此期间,您可以使用
x = concatenate(feature_list[:], axis=concat_axis)