我有这样的数据集:
> df<-data.frame(gender=c(rep("male",3),rep("female",3)),
Age=c(rep("old",3),rep("young",3)),VAR=c(rep(1:3),rep(1:3)),
FEN1=c(21,26,29,30,6,11),FEN2=c(14,55,12,33,9,21),
FEN3=c(88,23,55,23,14,66))
FEN1,FEN2和FEN3包含属于该组的个体总数,并具有VAR,Gender,Age,FEN列的特征。
我需要将其更改为数据框,其中每行属于一个人(总共536行),具有VAR,Gender,Age列的特征。
预期输出将包含:
我试图通过以下代码手动执行此操作:
> df2<-as.data.frame(1:536)
> FEN <- c(rep("FEN1",123), rep("FEN2",144), rep("FEN3",269))
> df2$FEN<-FEN
> Gender<-c(rep("male",...)...
但显然效率并不高。
答案 0 :(得分:2)
这是一种使用基本R方法的方法。
# get the vector names that are used to repeat
fenCats <- tail(names(df), 3)
# construct a list of data.frames where the rows have been repeated
# one data.frame for each of the FEN variables
temp <- Map(function(x) df[rep(seq_len(nrow(df)), x), 1:3], df[fenCats])
# combine list of data.frames and add column with FEN categories
dfNew <- cbind(do.call(rbind, temp),
"fenCats"=rep(fenCats, colSums(df[fenCats])))
我们可以使用
验证行计数是否正确nrow(dfNew) == sum(colSums(df[fenCats])) &
nrow(dfNew) == sum(rowSums(df[fenCats]))
[1] TRUE
作为附加验证,我们还可以使用子集和cumsum
拉出每个组的第一行来执行快速验证:
dfNew[cumsum(unlist(df[,fenCats])),]
gender Age VAR fenCats
FEN1.1.20 male old 1 FEN1
FEN1.2.25 male old 2 FEN1
FEN1.3.28 male old 3 FEN1
FEN1.4.29 female young 1 FEN1
FEN1.5.5 female young 2 FEN1
FEN1.6.10 female young 3 FEN1
FEN2.1.13 male old 1 FEN2
FEN2.2.54 male old 2 FEN2
FEN2.3.11 male old 3 FEN2
FEN2.4.32 female young 1 FEN2
FEN2.5.8 female young 2 FEN2
FEN2.6.20 female young 3 FEN2
FEN3.1.87 male old 1 FEN3
FEN3.2.22 male old 2 FEN3
FEN3.3.54 male old 3 FEN3
FEN3.4.22 female young 1 FEN3
FEN3.5.13 female young 2 FEN3
FEN3.6.65 female young 3 FEN3