将具有观察总数(人)的数据帧转换为具有每个观察(人)的行的数据

时间:2017-03-24 19:04:08

标签: r dataframe data-conversion

我有这样的数据集:

    > df<-data.frame(gender=c(rep("male",3),rep("female",3)),
    Age=c(rep("old",3),rep("young",3)),VAR=c(rep(1:3),rep(1:3)),
    FEN1=c(21,26,29,30,6,11),FEN2=c(14,55,12,33,9,21),
    FEN3=c(88,23,55,23,14,66))

FEN1,FEN2和FEN3包含属于该组的个体总数,并具有VAR,Gender,Age,FEN列的特征。

我需要将其更改为数据框,其中每行属于一个人(总共536行),具有VAR,Gender,Age列的特征。

预期输出将包含:

  • 21行信息:男性,旧,1,FEN1
  • 14行信息:男性,旧,1,FEN2
  • 88行信息:男性,旧,1,FEN3
  • 26行信息:男性,旧,2,FEN1
  • 55行信息:男性,旧,2,FEN2
  • 23行信息:男性,旧,2,FEN3
  • 等......

我试图通过以下代码手动执行此操作:

    > df2<-as.data.frame(1:536)
    > FEN <- c(rep("FEN1",123), rep("FEN2",144), rep("FEN3",269))
    > df2$FEN<-FEN
    > Gender<-c(rep("male",...)...

但显然效率并不高。

1 个答案:

答案 0 :(得分:2)

这是一种使用基本R方法的方法。

# get the vector names that are used to repeat
fenCats <- tail(names(df), 3)
# construct a list of data.frames where the rows have been repeated
# one data.frame for each of the FEN variables
temp <- Map(function(x) df[rep(seq_len(nrow(df)), x), 1:3], df[fenCats])
# combine list of data.frames and add column with FEN categories
dfNew <- cbind(do.call(rbind, temp),
               "fenCats"=rep(fenCats, colSums(df[fenCats])))

我们可以使用

验证行计数是否正确
nrow(dfNew) == sum(colSums(df[fenCats])) &
nrow(dfNew) == sum(rowSums(df[fenCats]))
[1] TRUE

作为附加验证,我们还可以使用子集和cumsum拉出每个组的第一行来执行快速验证:

dfNew[cumsum(unlist(df[,fenCats])),]
          gender   Age VAR fenCats
FEN1.1.20   male   old   1    FEN1
FEN1.2.25   male   old   2    FEN1
FEN1.3.28   male   old   3    FEN1
FEN1.4.29 female young   1    FEN1
FEN1.5.5  female young   2    FEN1
FEN1.6.10 female young   3    FEN1
FEN2.1.13   male   old   1    FEN2
FEN2.2.54   male   old   2    FEN2
FEN2.3.11   male   old   3    FEN2
FEN2.4.32 female young   1    FEN2
FEN2.5.8  female young   2    FEN2
FEN2.6.20 female young   3    FEN2
FEN3.1.87   male   old   1    FEN3
FEN3.2.22   male   old   2    FEN3
FEN3.3.54   male   old   3    FEN3
FEN3.4.22 female young   1    FEN3
FEN3.5.13 female young   2    FEN3
FEN3.6.65 female young   3    FEN3