Spark中有一个数据框df
:
|-- array_field: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- a: string (nullable = true)
| | |-- b: long (nullable = true)
| | |-- c: long (nullable = true)
如何将字段array_field.a
重命名为array_field.a_renamed
?
[更新]:
.withColumnRenamed()
不适用于嵌套字段,所以我尝试了这种hacky和不安全的方法:
# First alter the schema:
schema = df.schema
schema['array_field'].dataType.elementType['a'].name = 'a_renamed'
ind = schema['array_field'].dataType.elementType.names.index('a')
schema['array_field'].dataType.elementType.names[ind] = 'a_renamed'
# Then set dataframe's schema with altered schema
df._schema = schema
我知道设置私有属性不是一个好习惯,但我不知道为df设置架构的其他方法
我认为我走在正确的轨道上,df.printSchema()
仍显示array_field.a
的旧名称,但df.schema == schema
为True
答案 0 :(得分:6)
<强>的Python 强>
无法修改单个嵌套字段。您必须重新创建整个结构。在这种特殊情况下,最简单的解决方案是使用cast
。
首先是一堆进口:
from collections import namedtuple
from pyspark.sql.functions import col
from pyspark.sql.types import (
ArrayType, LongType, StringType, StructField, StructType)
和示例数据:
Record = namedtuple("Record", ["a", "b", "c"])
df = sc.parallelize([([Record("foo", 1, 3)], )]).toDF(["array_field"])
让我们确认架构与您的情况相同:
df.printSchema()
root
|-- array_field: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- a: string (nullable = true)
| | |-- b: long (nullable = true)
| | |-- c: long (nullable = true)
您可以将新架构定义为字符串:
str_schema = "array<struct<a_renamed:string,b:bigint,c:bigint>>"
df.select(col("array_field").cast(str_schema)).printSchema()
root
|-- array_field: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- a_renamed: string (nullable = true)
| | |-- b: long (nullable = true)
| | |-- c: long (nullable = true)
或DataType
:
struct_schema = ArrayType(StructType([
StructField("a_renamed", StringType()),
StructField("b", LongType()),
StructField("c", LongType())
]))
df.select(col("array_field").cast(struct_schema)).printSchema()
root
|-- array_field: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- a_renamed: string (nullable = true)
| | |-- b: long (nullable = true)
| | |-- c: long (nullable = true)
Scala
Scala中可以使用相同的技术:
case class Record(a: String, b: Long, c: Long)
val df = Seq(Tuple1(Seq(Record("foo", 1, 3)))).toDF("array_field")
val strSchema = "array<struct<a_renamed:string,b:bigint,c:bigint>>"
df.select($"array_field".cast(strSchema))
或
import org.apache.spark.sql.types._
val structSchema = ArrayType(StructType(Seq(
StructField("a_renamed", StringType),
StructField("b", LongType),
StructField("c", LongType)
)))
df.select($"array_field".cast(structSchema))
可能的改进:
如果您使用富有表现力的数据操作或JSON处理库,可以更容易地将数据类型转储到dict
或JSON字符串,并从那里获取它(例如Python / toolz
):
from toolz.curried import pipe, assoc_in, update_in, map
from operator import attrgetter
# Update name to "a_updated" if name is "a"
rename_field = update_in(
keys=["name"], func=lambda x: "a_updated" if x == "a" else x)
updated_schema = pipe(
# Get schema of the field as a dict
df.schema["array_field"].jsonValue(),
# Update fields with rename
update_in(
keys=["type", "elementType", "fields"],
func=lambda x: pipe(x, map(rename_field), list)),
# Load schema from dict
StructField.fromJson,
# Get data type
attrgetter("dataType"))
df.select(col("array_field").cast(updated_schema)).printSchema()
答案 1 :(得分:1)
您可以递归遍历数据框的架构以创建具有所需更改的新架构。
PySpark中的模式是一个StructType,它包含一个StructFields列表,每个StructField可以容纳一些primitve类型或另一个StructType。
这意味着我们可以根据类型是否为StructType来决定是否要递归。
下面是带注释的示例实现,向您展示如何实现上述想法。
# Some imports
from pyspark.sql import *
from copy import copy
# We take a dataframe and return a new one with required changes
def cleanDataFrame(df: DataFrame) -> DataFrame:
# Returns a new sanitized field name (this function can be anything really)
def sanitizeFieldName(s: str) -> str:
return s.replace("-", "_").replace("&", "_").replace("\"", "_")\
.replace("[", "_").replace("]", "_").replace(".", "_")
# We call this on all fields to create a copy and to perform any changes we might
# want to do to the field.
def sanitizeField(field: StructField) -> StructField:
field = copy(field)
field.name = sanitizeFieldName(field.name)
# We recursively call cleanSchema on all types
field.dataType = cleanSchema(field.dataType)
return field
def cleanSchema(dataType: [DataType]) -> [DateType]:
dataType = copy(dataType)
# If the type is a StructType we need to recurse otherwise we can return since
# we've reached the leaf node
if isinstance(dataType, StructType):
# We call our sanitizer for all top level fields
dataType.fields = [sanitizeField(f) for f in dataType.fields]
elif isinstance(dataType, ArrayType):
dataType.elementType = cleanSchema(dataType.elementType)
return dataType
# Now since we have the new schema we can create a new DataFrame by using the old Frame's RDD as data and the new schema as the schema for the data
return spark.createDataFrame(df.rdd, cleanSchema(df.schema))
答案 2 :(得分:1)
我发现比@ zero323提供的方法简单得多的方法 @MaxPY:
Pyspark 2.4:
# Get the schema from the dataframe df
schema = df.schema
# Override `fields` with a list of new StructField, equals to the previous but for the names
schema.fields = (list(map(lambda field:
StructField(field.name + "_renamed", field.dataType), schema.fields)))
# Override also `names` with the same mechanism
schema.names = list(map(lambda name: name + "_renamed", table_schema.names))
现在df.schema
将打印所有更新的名称。
答案 3 :(得分:0)
另一个更简单的解决方案,如果它对你有用,就像它对我一样有用,就是压平结构,然后重命名:
使用 Scala:
val df_flat = df.selectExpr("array_field.*")
现在重命名有效
val df_renamed = df_flat.withColumnRenamed("a", "a_renamed")
当然这仅在您不需要层次结构时才对您有用(尽管我认为如果需要它可以再次重新创建)