我正在尝试使用Scala将csv文件转换为Spark 1.5.2中的数据帧,而不使用库数据库,因为它是一个社区项目,并且此库不可用。我的方法如下:
var inputPath = "input.csv"
var text = sc.textFile(inputPath)
var rows = text.map(line => line.split(",").map(_.trim))
var header = rows.first()
var data = rows.filter(_(0) != header(0))
var df = sc.makeRDD(1 to data.count().toInt).map(i => (data.take(i).drop(i-1)(0)(0), data.take(i).drop(i-1)(0)(1), data.take(i).drop(i-1)(0)(2), data.take(i).drop(i-1)(0)(3), data.take(i).drop(i-1)(0)(4))).toDF(header(0), header(1), header(2), header(3), header(4))
这段代码虽然很乱,却无需返回任何错误消息。尝试在df
中显示数据时,问题就来验证此方法的正确性,然后尝试在df
中进行一些查询。执行df.show()
后我得到的错误代码是SPARK-5063
。我的问题是:
1)为什么无法打印df
的内容?
2)是否还有其他更简单的方法可以在不使用库Spark 1.5.2
的情况下将csv转换为databricks
中的数据框?
答案 0 :(得分:4)
对于spark 1.5.x,可以使用下面的代码片段将输入转换为DF
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._
// Define the schema using a case class.
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the DataClass interface with 5 fields.
case class DataClass(id: Int, name: String, surname: String, bdate: String, address: String)
// Create an RDD of DataClass objects and register it as a table.
val peopleData = sc.textFile("input.csv").map(_.split(",")).map(p => DataClass(p(0).trim.toInt, p(1).trim, p(2).trim, p(3).trim, p(4).trim)).toDF()
peopleData.registerTempTable("dataTable")
val peopleDataFrame = sqlContext.sql("SELECT * from dataTable")
peopleDataFrame.show()
答案 1 :(得分:2)
您可以这样创建:
SparkSession spark = SparkSession
.builder()
.appName("RDDtoDF_Updated")
.master("local[2]")
.config("spark.some.config.option", "some-value")
.getOrCreate();
StructType schema = DataTypes
.createStructType(new StructField[] {
DataTypes.createStructField("eid", DataTypes.IntegerType, false),
DataTypes.createStructField("eName", DataTypes.StringType, false),
DataTypes.createStructField("eAge", DataTypes.IntegerType, true),
DataTypes.createStructField("eDept", DataTypes.IntegerType, true),
DataTypes.createStructField("eSal", DataTypes.IntegerType, true),
DataTypes.createStructField("eGen", DataTypes.StringType,true)});
String filepath = "F:/Hadoop/Data/EMPData.txt";
JavaRDD<Row> empRDD = spark.read()
.textFile(filepath)
.javaRDD()
.map(line -> line.split("\\,"))
.map(r -> RowFactory.create(Integer.parseInt(r[0]), r[1].trim(),Integer.parseInt(r[2]),
Integer.parseInt(r[3]),Integer.parseInt(r[4]),r[5].trim() ));
Dataset<Row> empDF = spark.createDataFrame(empRDD, schema);
empDF.groupBy("edept").max("esal").show();
答案 2 :(得分:0)
将Spark与Scala结合使用。
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
var hiveCtx = new HiveContext(sc)
var inputPath = "input.csv"
var text = sc.textFile(inputPath)
var rows = text.map(line => line.split(",").map(_.trim)).map(a => Row.fromSeq(a))
var header = rows.first()
val schema = StructType(header.map(fieldName => StructField(fieldName.asInstanceOf[String],StringType,true)))
val df = hiveCtx.createDataframe(rows,schema)
这应该有效。
但是,对于创建数据框架,建议您使用Spark-CSV。