一维最小绝对差的次梯度

时间:2017-03-22 18:11:10

标签: python numpy machine-learning bisection convex-optimization

我正在尝试解决以下一维最小绝对差异(LAD)优化问题

1D LAD

我正在使用二分法找到最佳beta(标量)。我有以下代码:

import numpy as np
x = np.random.randn(10)
y = np.sign(np.random.randn(10))  + np.random.randn(10)

def find_best(x, y):
    best_obj = 1000000
    for beta in np.linspace(-100,100,1000000):
        if np.abs(beta*x - y).sum() < best_obj:
            best_obj = np.abs(beta*x - y).sum()
            best_beta = beta
    return best_obj, best_beta

def solve_bisect(x, y):
    it = 0
    u = 100
    l = -100
    while True:
        it +=1

        if it > 40:
            # maxIter reached
            return obj, beta, subgrad

        # select the mid-point
        beta = (l + u)/2

        # subgrad calculation. \partial |x*beta - y| = sign(x*beta - y) * x. np.abs(x * beta -y) > 1e-5 is to avoid numerical issue
        subgrad = (np.sign(x * beta - y) * (np.abs(x * beta - y) > 1e-5) * x).sum()
        obj = np.sum(np.abs(x * beta - y))
        print 'obj = %f, subgrad = %f, current beta = %f' % (obj, subgrad, beta)

        # bisect. check subgrad to decide which part of the space to cut out
        if np.abs(subgrad) <1e-3:
            return obj, beta, subgrad
        elif subgrad > 0:
            u = beta + 1e-3
        else:
            l = beta - 1e-3
brute_sol = find_best(x,y)
bisect_sol = solve_bisect(x,y)
print 'brute_sol: obj = %f, beta = %f' % (brute_sol[0], brute_sol[1])                                                                                                                                         
print 'bisect_sol: obj = %f, beta = %f, subgrad = %f' % (bisect_sol[0], bisect_sol[1], bisect_sol[2])

正如你所看到的,我还有一个强力实现,搜索空间以获得oracle答案(最多一些数字错误)。每次运行都可以找到最佳的最佳和最小目标值。但是,subgrad不是0(甚至不接近)。例如,我的一次奔跑我得到了以下内容:

brute_sol: obj = 10.974381, beta = -0.440700
bisect_sol: obj = 10.974374, beta = -0.440709, subgrad = 0.840753

目标值和最佳值是正确的,但是subgrad根本不接近0。所以问题是:

  1. 为什么subgrad不接近0?当且仅当它是最优的时,不是最优条件是0在次微分中吗?
  2. 我们应该使用什么停止标准?

3 个答案:

答案 0 :(得分:0)

我不熟悉subgradient这个术语,但要理解为什么你计算的subgrad通常不是0,让我们看看下面这个简单的例子:x1 = 1000,x2 = 1,y1 = 0,y2 = 1。

最小值显然为1,在beta = 0时达到。但subgrad等于-1。 但请注意,在beta = 0 + eps时,梯度为999,在β= 0-eps时,梯度为-1001,这表明正确的标准:

lim beta-> beta0-0 nabla_beta&lt; 0和limβ-> beta0 + 0 nabla_beta> 0

答案 1 :(得分:0)

我不是副衍生物的专家,但我的理解是,在一个不可分割的点上,一个函数通常会有许多子衍生物。例如,对于0处的绝对值函数,y = m * x其中| m | &LT; 1将全部是subtangents。显然,最小值为0,但1肯定是有效的次梯度。

关于你的问题,我认为有一些更快的方法可以做到这一点。首先,您知道解决方案必须出现在这些结点之一(即功能不可区分的点)。这些不可微分的点出现在n个点β= y_i / x_i。第一种方法是仅计算n个点中每个点的目标并取最小值(即O(n ^ 2))。第二种方法是对候选解决方案列表(n * log(n))进行排序,然后执行二分(log(n))。代码显示蛮力,尝试所有不可微分点和二分法(可能有一些我没有想到的角落情况)。我也绘制了一个目标示例,因此您可以验证子梯度不需要为零

import numpy as np
import matplotlib.pyplot as plt
import pdb

def brute_force(x,y):
    optimum = np.inf
    beta_optimal = 0

    for b in np.linspace(-5,5,1000):
        obj = np.sum(np.abs(b * x - y))
        if obj < optimum:
            beta_optimal = b
            optimum = obj
    return beta_optimal, optimum

def faster_solve(x, y):
    soln_candidates = y / (x + 1e-8) # hack for div by zero
    optimum = np.inf
    beta_optimal = 0
    for b in soln_candidates.squeeze():
        obj = np.sum(np.abs(b * x - y))
        if obj < optimum:
            beta_optimal = b
            optimum = obj

    return beta_optimal, optimum

def bisect_solve(x,y):
    soln_candidates = (y / (x + 1e-8)).squeeze() # avoid div by zero
    sorted_solns = np.sort(soln_candidates)
    indx_l = 0
    indx_u = x.shape[0] - 1

    while True:
        if (indx_l + 1 >= indx_u):
            beta_l = sorted_solns[indx_l]
            beta_u = sorted_solns[indx_u]

            obj_l = np.sum(np.abs(beta_l * x - y))
            obj_u = np.sum(np.abs(beta_u * x - y))

            if obj_l < obj_u:
                return beta_l, obj_l
            else:
                return beta_u, obj_u

        mid = int((indx_l + indx_u)/2)
        beta_mid = sorted_solns[mid]
        diff_mid = beta_mid * x - y
        subgrad_mid = np.sum(np.sign(diff_mid) * x)
        if subgrad_mid > 0:
            indx_u = mid
        elif subgrad_mid < 0:
            indx_l = mid

def main():
  np.random.seed(70963)
  N = 10
  x = np.random.randint(-9,9, (N,1))
  y = np.random.randint(-9,9, (N,1))

  num_plot_pts = 1000
  beta = np.linspace(-5,5, num_plot_pts)
  beta = np.expand_dims(beta, axis=1)
  abs_diff_mat = np.abs(np.dot(x, beta.T) - y)  # broadcasting!!
  abs_dev = np.sum(abs_diff_mat, axis=0)  # sum the rows together

  brute_optimal_beta, brute_optimum = brute_force(x,y)
  fast_beta, fast_optimum = faster_solve(x,y)
  bisect_beta, bisect_optimum = bisect_solve(x,y)

  print('Brute force beta: {0:.4f} with objective value {1:.4f}'.format(brute_optimal_beta, brute_optimum))
  print('Faster solve beta: {0:.4} with objective value {1:.4}'.format(fast_beta, fast_optimum))
  print('Bisection solve beta: {0:4} with objective value {1:4}'.format(bisect_beta, bisect_optimum))

  plt.plot(beta, abs_dev)
  plt.grid()
  plt.xlabel(r'$\beta$')
  plt.ylabel(r'$\sum_{i=1}^N |\beta x_i - y_i|$')
  plt.title(r'Absolute Deviation as function of $\beta$')
  plt.tight_layout()
  plt.show()

if __name__ == '__main__':
  main()

enter image description here

答案 2 :(得分:0)

以矩阵的形式写您的问题:

$$ f \ left(\ beta \ right)= {\ left \ | X \ beta-y \ right \ |} _ {2} $$

enter image description here

然后:

$$ \ frac {\ partial f \ left(\ beta \ right)} {\ partial \ beta} = {X} ^ {T} \ operatorname {sign} \ left(X \ beta-y \ right) $$

enter image description here

实际上是该函数的Sub Gradient。