我们假设我有一个表格,其中包含日期和每个日期的值(加上其他列)。 我可以使用
在同一天找到具有相同值的行data.duplicated(subset=["VALUE", "DAY"], keep=False)
现在,假设我想允许一天关闭1或2,并且关闭值最多10,我该怎么做?
示例:
DAY MTH YYY VALUE NAME
22 9 2016 8.25 John
22 9 2016 43 John
6 11 2016 28.25 Mary
2 10 2016 50 George
23 11 2016 90 George
23 10 2016 30 Jenn
24 8 2016 10 Mike
24 9 2016 10 Mike
24 10 2016 10 Mike
24 11 2016 10 Mike
13 9 2016 170 Kathie
13 10 2016 170 Kathie
13 11 2016 160 Kathie
8 9 2016 16 Gina
9 10 2016 16 Gina
8 11 2016 16 Gina
16 11 2016 25 Ross
21 11 2016 45 Ross
23 9 2016 50 Shari
23 10 2016 50 Shari
23 11 2016 50 Shari
使用上面的代码我可以找到:
DAY MTH YYY VALUE NAME
24 8 2016 10 Mike
24 9 2016 10 Mike
24 10 2016 10 Mike
24 11 2016 10 Mike
23 9 2016 50 Shari
23 10 2016 50 Shari
23 11 2016 50 Shari
但是,我想在8月8日,9月9日和10月8日检测Gina的值16,因为它们具有相同的值,虽然不是同一天,但它只是休息一天。
同样,我想在9月13日,10月13日和11月13日为Kathie检测值,因为该值仅为10。
我该怎么做?
答案 0 :(得分:2)
暴力强迫:
df_data = df_data.sort_values(['DAY','VALUE'])
df_data['Dup'] = False
prev_row = pd.Series()
prev_idx = None
for idx, row in df_data.iterrows():
if not prev_row.empty:
if (abs(row['DAY'] - prev_row['DAY']) <=2) & \
(abs(row['VALUE'] - prev_row['VALUE']) <=10):
df_data['Dup'][idx] = True
df_data['Dup'][prev_idx] = True
prev_row, prev_idx = row, idx
print df_data
给出:
DAY MTH YYY VALUE Dup
3 2 10 2016 50.00 False
2 6 11 2016 28.25 False
13 8 9 2016 16.00 True
15 8 11 2016 16.00 True
14 9 10 2016 16.00 True
12 13 11 2016 160.00 True
10 13 9 2016 170.00 True
11 13 10 2016 170.00 True
16 16 11 2016 25.00 False
17 21 11 2016 45.00 False
0 22 9 2016 8.25 False
1 22 9 2016 43.00 False
5 23 10 2016 30.00 False
18 23 9 2016 50.00 True
19 23 10 2016 50.00 True
20 23 11 2016 50.00 True
4 23 11 2016 90.00 False
6 24 8 2016 10.00 True
7 24 9 2016 10.00 True
8 24 10 2016 10.00 True
9 24 11 2016 10.00 True
这是预期的结果吗?
答案 1 :(得分:2)
使用numpy
和三角形索引来映射所有组合
day = df.DAY.values
val = df.VALUE.values
i, j = np.triu_indices(len(df), k=1)
c1 = np.abs(day[i] - day[j]) < 2
c2 = np.abs(val[i] - val[j]) < 10
c = c1 & c2
df.iloc[np.unique(np.append(i[c], j[c]))]
DAY MTH YYY VALUE NAME
1 22 9 2016 43.0 John
6 24 8 2016 10.0 Mike
7 24 9 2016 10.0 Mike
8 24 10 2016 10.0 Mike
9 24 11 2016 10.0 Mike
10 13 9 2016 170.0 Kathie
11 13 10 2016 170.0 Kathie
13 8 9 2016 16.0 Gina
14 9 10 2016 16.0 Gina
15 8 11 2016 16.0 Gina
17 21 11 2016 45.0 Ross
18 23 9 2016 50.0 Shari
19 23 10 2016 50.0 Shari
20 23 11 2016 50.0 Shari