我有月度数据库表,用于存储我的网站的每日用户注册数。在我的UI设计中,我有两个日期之间的日期范围,我必须在提供的日期范围之间获得注册用户的总和。(但是会有4或5日期范围之间的许多月(基于日期范围))我将如何获取数据?我需要优化的解决方案,以便从多个mysql表中获取数据总和。
CREATE TABLE daily_analytics_01_2017 (
id int(11) NOT NULL AUTO_INCREMENT,
country varchar(255) DEFAULT NULL,
device varchar(255) DEFAULT NULL,
browser varchar(255) DEFAULT NULL,
gender varchar(255) DEFAULT NULL, u
ser_loginCount int(11) NOT NULL,
user_signup_count int(11) NOT NULL,
tracking_date date NOT NULL,
PRIMARY KEY (id) ) ENGINE=InnoDB AUTO_INCREMENT=16 DEFAULT CHARSET=latin1;
上表中的每个月名称如
daily_analytics_MONTH_YEAR
以及我网站上登录和其他操作的所有数据,我必须每月跟踪。
答案 0 :(得分:1)
使用以下函数构建查询:
function getMonthWiseQuery($fromdate,$todate)
{
$fromexplode=explode("-",$fromdate);
$startyear=$fromexplode[0];
$startmonth=$fromexplode[1];
$startdate=$fromexplode[2];
$toexplode=explode("-",$todate);
$endyear=$toexplode[0];
$endmonth=$toexplode[1];
$enddate=$toexplode[2];
$queryBuild=array();
$startmonthnew = $startmonth;
$count=0;
for ($i = $startyear; $i <= $endyear; $i++) {
for ($j = $startmonthnew; $j < 13; $j++) {
$count++;
if ($fromdate) {
if (strlen($j) == 1) {
$j = "0" . $j;
}
if($count!=1)
{
$query=" UNION ALL";
$query.= " select sum(user_with_referral) as Total_UserBy_referral,sum(total_unverified_users) as TotalUnverifiedUsers,sum(user_signup_count) as TotalRegisteredUsers,sum(user_signUpactivationSuccess_count) as TotalActivatedUsers from daily_analytics_{$j}_{$i} where tracking_date BETWEEN \"{$fromdate}\" and \"{$todate}\" ";
}else{
$query = "select sum(user_with_referral) as Total_UserBy_referral,sum(total_unverified_users) as TotalUnverifiedUsers,sum(user_signup_count) as TotalRegisteredUsers,sum(user_signUpactivationSuccess_count) as TotalActivatedUsers from daily_analytics_{$j}_{$i} where tracking_date BETWEEN \"{$fromdate}\" and \"{$todate}\" ";
}
array_push($queryBuild,$query);
}
if ($j == 12) {
$startmonthnew = 1;
break;
}
if ($endyear == $i) {
if ($j == $endmonth) {
break;
}
}
}
}
return implode(" ",$queryBuild);
}
函数将返回与日期范围中的所有表的联合查询 -
select sum(user_with_referral) as Total_UserBy_referral,sum(total_unverified_users) as TotalUnverifiedUsers,sum(user_signup_count) as TotalRegisteredUsers,sum(user_signUpactivationSuccess_count) as TotalActivatedUsers from daily_analytics_01_2017 where tracking_date BETWEEN "2017-01-01" and "2017-03-21"
UNION ALL
select sum(user_with_referral) as Total_UserBy_referral,sum(total_unverified_users) as TotalUnverifiedUsers,sum(user_signup_count) as TotalRegisteredUsers,sum(user_signUpactivationSuccess_count) as TotalActivatedUsers from daily_analytics_02_2017 where tracking_date BETWEEN "2017-01-01" and "2017-03-21"
UNION ALL
select sum(user_with_referral) as Total_UserBy_referral,sum(total_unverified_users) as TotalUnverifiedUsers,sum(user_signup_count) as TotalRegisteredUsers,sum(user_signUpactivationSuccess_count) as TotalActivatedUsers from daily_analytics_03_2017 where tracking_date BETWEEN "2017-01-01" and "2017-03-21"
然后,根据此查询,我们可以从表格的UNION中获取总结果的总和 -
select sum(Total_UserBy_referral) as Total_UserBy_referral , sum(TotalUnverifiedUsers) as TotalUnverifiedUsers,sum(TotalRegisteredUsers) as TotalRegisteredUsers, sum(TotalActivatedUsers) as TotalActivatedUsers from (
select sum(user_with_referral) as Total_UserBy_referral,sum(total_unverified_users) as TotalUnverifiedUsers,sum(user_signup_count) as TotalRegisteredUsers,sum(user_signUpactivationSuccess_count) as TotalActivatedUsers from daily_analytics_01_2017 where tracking_date BETWEEN "2017-01-01" and "2017-03-21"
UNION ALL
select sum(user_with_referral) as Total_UserBy_referral,sum(total_unverified_users) as TotalUnverifiedUsers,sum(user_signup_count) as TotalRegisteredUsers,sum(user_signUpactivationSuccess_count) as TotalActivatedUsers from daily_analytics_02_2017 where tracking_date BETWEEN "2017-01-01" and "2017-03-21"
UNION ALL
select sum(user_with_referral) as Total_UserBy_referral,sum(total_unverified_users) as TotalUnverifiedUsers,sum(user_signup_count) as TotalRegisteredUsers,sum(user_signUpactivationSuccess_count) as TotalActivatedUsers from daily_analytics_03_2017 where tracking_date BETWEEN "2017-01-01" and "2017-03-21"
) as t
答案 1 :(得分:0)
如果将所有注册存储在一个表中,会不会更好?查询和维护更容易。
// the selected range will have to be formatted
$from = '2017-01-01 00:00:00';
$to = '2017-03-15 23:59:59';
// you will have to run this query just once on one particular table
$query = "SELECT count(*) as number_of_signups FROM tablename WHERE created_on BETWEEN $from AND $to";
如果您希望每月在不同的表中存储注册,那么您可以使用时间戳列上的数据范围查询每个表。
// initialization
$count = 0;
// the selected range will have to be formatted
$from = '2017-01-01 00:00:00';
$to = '2017-03-15 23:59:59';
$con=mysqli_connect("yourhost","dbuser","password","your_db");
// Check connection
if (mysqli_connect_errno())
{
echo "Failed to connect to MySQL: " . mysqli_connect_error();
}
// run this query on all the signup tables
$query = "SELECT count(*) as number_of_signups FROM tablename WHERE created_on BETWEEN $from AND $to";
$result=mysqli_query($con,$query);
// Associative array
$row=mysqli_fetch_assoc($result);
$count += $row['number_of_signups'];
// Free result set
mysqli_free_result($result);
mysqli_close($con);
正如您所看到的,这部分变得非常冗长和复杂:
// run this query on all the signup tables
$query = "SELECT count(*) as number_of_signups FROM tablename WHERE created_on BETWEEN $from AND $to";
$result=mysqli_query($con,$query);
// Associative array
$row=mysqli_fetch_assoc($result);
$count += $row['number_of_signups'];
答案 2 :(得分:0)
$sql = "SELECT id, country,device,
LOWER(MONTHNAME(tracking_date)) AS month,
YEAR(tracking_date) AS `year`,
SUM(user_signup_count) AS `monthly_sum`
FROM daily_analytics_01_2017
WHERE tracking_date BETWEEN '$first' AND '$last'
GROUP BY month";
说明: 明智地创建表,创建单个表并使用它是不是一个好主意。以上查询就足够了。
$first - start date
$last - end date
答案 3 :(得分:0)
检查此代码,它将显示所有之前的12个月登录用户注册信息。您需要将此代码更改为表字段和表名。
select date_year y, date_month m, count(*) cnt
from
(select id, year(access_time) date_year, month(access_time) date_month, access_time, uid
from users_login_detail_history
where date(access_time) >= date_format(concat (year(date_add(date(now()), interval -1 year)), '-' , month(date_add(date(now()), interval -1 year)) , '-1'), '%Y-%m-%d')) login_data
group by date_year, date_month
order by date_year, date_month;