在Win7上,在msys2上使用mingw-64工具链(但在linux gcc上也是如此),使用OpenCv-3.2.0(但它与3.1.0相同)。
以下是我试图尽可能简化的代码,以显示我的问题:
#include <thread>
#include <iostream>
#include <iomanip>
#include "opencv_detector.h"
#include <windows.h>
#include <psapi.h>
/**
* Returns the current resident set size (physical memory use) measured in bytes
*/
inline size_t getCurrentRSS( )
{
PROCESS_MEMORY_COUNTERS info;
GetProcessMemoryInfo( GetCurrentProcess( ), &info, sizeof(info) );
return (size_t)info.WorkingSetSize;
}
int main(int argc, char** argv)
{
auto opencvDetector = new wl::ds::OpencvDetector();
cv::Mat img = cv::imread("./test.png");
int i = 0;
long rss = getCurrentRSS();
long rss_start = rss;
long rss1 = rss;
std::cout << std::setw(7) << "START " << rss <<std::endl;
while(i++<1000) {
// If I just call the function no memory leak
//opencvDetector->process(img);
// If I call the function in a thread, memory leak
auto opencvDetectProfile = std::thread(&wl::ds::OpencvDetector::process, opencvDetector, img);
opencvDetectProfile.join();
rss1 = getCurrentRSS();
if(rss!=rss1) {
std::cout << std::setw(6) << i << " " << rss1 << " (" << std::setw(8) << (rss1-rss) << " / " << std::setw(7) << (rss1-rss_start) << ")" << std::endl;
rss = rss1;
}
}
std::cout << std::setw(7) << "STOP " << rss1 << " (" << std::setw(8) << (rss1-rss) << " / " << std::setw(7) << (rss1-rss_start) << ")" << std::endl;
return 0;
}
这是非常简单的openCvDetector类:
#ifndef WL_DS_OPENCVDETECTOR_H
#define WL_DS_OPENCVDETECTOR_H
#include <string>
#include <opencv2/opencv.hpp>
namespace wl {
namespace ds {
class OpencvDetector {
private:
cv::CascadeClassifier cascadeClassifier;
public:
OpencvDetector() { cascadeClassifier.load("haarcascade_frontalface.xml"); };
void process(cv::Mat img) {
cv::cvtColor(img, img, CV_BGR2GRAY);
cv::equalizeHist(img, img);
std::vector<cv::Rect> faces;
cascadeClassifier.detectMultiScale(img, faces, 1.05, 3, 0|CV_HAAR_SCALE_IMAGE);
};
};
} // wl
} // ds
#endif // WL_DS_OPENCVDETECTOR_H
如果我直接调用opencvDetector->process(img);
,内存使用会迅速稳定下来:
START 18280448
1 30892032 (12611584 / 12611584)
2 30908416 ( 16384 / 12627968)
4 30928896 ( 20480 / 12648448)
5 30941184 ( 12288 / 12660736)
8 30945280 ( 4096 / 12664832)
11 30953472 ( 8192 / 12673024)
12 30957568 ( 4096 / 12677120)
STOP 30957568 ( 0 / 12677120)
但是如果我运行线程版本(在线程中调用OpenCvDetector的成员函数),内存使用量会不断增长:
START 18280448
1 30965760 (12685312 / 12685312)
2 30879744 ( -86016 / 12599296)
3 30883840 ( 4096 / 12603392)
8 30916608 ( 32768 / 12636160)
10 31035392 ( 118784 / 12754944)
11 31047680 ( 12288 / 12767232)
12 30961664 ( -86016 / 12681216)
14 30965760 ( 4096 / 12685312)
20 30969856 ( 4096 / 12689408)
120 31346688 ( 376832 / 13066240)
121 31084544 ( -262144 / 12804096)
153 31088640 ( 4096 / 12808192)
213 31092736 ( 4096 / 12812288)
233 31096832 ( 4096 / 12816384)
248 31100928 ( 4096 / 12820480)
294 31105024 ( 4096 / 12824576)
335 31109120 ( 4096 / 12828672)
417 31113216 ( 4096 / 12832768)
499 31117312 ( 4096 / 12836864)
504 31121408 ( 4096 / 12840960)
540 31125504 ( 4096 / 12845056)
581 31129600 ( 4096 / 12849152)
665 31133696 ( 4096 / 12853248)
749 31137792 ( 4096 / 12857344)
781 31141888 ( 4096 / 12861440)
833 31145984 ( 4096 / 12865536)
848 31207424 ( 61440 / 12926976)
STOP 31207424 ( 0 / 12926976)
我很失望,因为我想在很多线程中实现很多OpenCv检测,所以看起来有点内存泄漏正在迅速成为资源的巨大浪费。 任何提示都将不胜感激......
答案 0 :(得分:1)
您在所有线程中使用相同的opencvDetector
,这可能导致未定义的行为。在你的情况下,它会导致内存泄漏。
尝试这种方式:
auto opencvDetector = new wl::ds::OpencvDetector();
auto opencvDetectProfile = std::thread(&wl::ds::OpencvDetector::process, opencvDetector, img);
opencvDetectProfile.join();
delete opencvDetector;