我的目标是返回日期范围内的每个日期,并计算每个日期的所有记录。
MyTable
-------------------------------
| OrderId | DateFinalized |
-------------------------------
| 51 | 2016-1-3 12:50:34 |
| 55 | 2016-1-4 10:01:56 |
| 73 | 2016-1-4 11:52:02 |
| 93 | 2016-1-6 01:35:16 |
| 104 | 2016-1-6 02:40:47 |
-------------------------------
挑战在于包括没有订单的日期。使用上面的MyTable
,如果日期范围介于2016-1-1
和2016-1-6
之间,则所需的输出为:
---------------------
| MyDate | Orders |
---------------------
| 2016-1-1 | 0 |
| 2016-1-2 | 0 |
| 2016-1-3 | 1 |
| 2016-1-4 | 2 |
| 2016-1-5 | 0 |
| 2016-1-6 | 2 |
---------------------
为了做到这一点,我使用此查询选择仅限日期,并在1秒内
declare @startdate datetime = '1/1/2016';
declare @enddate datetime = '1/1/2017';
with [dates] as (
select convert(date, @startdate) as [date]
union all
select dateadd(day, 1, [date])
from [dates]
where [date] < @enddate
)
select
[date]
from [dates]
where [date] between @startdate and @enddate
order by [date] desc
option (maxrecursion 0)
当我选择按日期分组的订单计数时,如下所示,它也只需 1秒:
declare @startdate datetime = '2/1/2016';
declare @enddate datetime = '1/1/2017';
select
convert(date,DATEADD(dd, DATEDIFF(dd, 0, datefinalized), 0)) as Dates,
count(OrderID) as OrderCount
from orders
where datefinalized between @startdate and @enddate
GROUP BY DATEADD(dd, DATEDIFF(dd, 0, datefinalized), 0)
order by DATEADD(dd, DATEDIFF(dd, 0, datefinalized), 0) desc
问题是当我在单个SQL语句中组合这两个查询时。 LEFT JOIN
执行 20秒(!!!)。我尝试了一个giggles的子查询,并且在 13秒时它没有好多了:
如何有效地加入结果数据集?
提前感谢您的时间。
答案 0 :(得分:1)
使用递归cte是生成一系列日期的最糟糕方法之一。使用堆叠cte much faster可以按需生成日期范围,而不是使用递归cte。
如果您要在多行或长时间内使用它,或者您将多次运行此类操作,那么最好只创建Dates
或{{1} } table。
内存中只有152kb,你可以在一张桌子上有30年的日期,你可以像这样使用它:
Calendar
并像这样查询:
/* dates table */
declare @fromdate date = '20000101';
declare @years int = 30;
/* 30 years, 19 used data pages ~152kb in memory, ~264kb on disk */
;with n as (select n from (values(0),(1),(2),(3),(4),(5),(6),(7),(8),(9)) t(n))
select top (datediff(day, @fromdate,dateadd(year,@years,@fromdate)))
[Date]=convert(date,dateadd(day,row_number() over(order by (select 1))-1,@fromdate))
into dbo.Dates
from n as deka cross join n as hecto cross join n as kilo
cross join n as tenK cross join n as hundredK
order by [Date];
create unique clustered index ix_dbo_Dates_date
on dbo.Dates([Date]);
数字和日历表参考:
如果您真的不想要日历表,可以使用堆叠的cte部分:
select
d.[Date]
, OrderCount = count(o.OrderID)
from dates d
left join orders o
on convert(date,o.OrderDate) = d.[Date]
group by d.[Date]
order by d.[Date] desc