以下代码通过索引向张量内的特定位置添加内容(感谢@ mrry的答案here)。
indices = [[1, 1]] # A list of coordinates to update.
values = [1.0] # A list of values corresponding to the respective
# coordinate in indices.
shape = [3, 3] # The shape of the corresponding dense tensor, same as `c`.
delta = tf.SparseTensor(indices, values, shape)
例如,鉴于此 -
c = tf.constant([[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]])
它会在[1,1]处加1,导致
[[0.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 0.0]])
问题 - 是否可以替换特定位置的值而不是在该位置添加?如果在tensorflow中不可能,是否可以在任何其他类似的库中使用?
例如,
鉴于此 -
[[4.0, 43.1.0, 45.0],
[2.0, 22.0, 6664.0],
[-4543.0, 0.0, 43.0]])
有没有办法用(例如)45替换[1,1]的22,导致下面的?
[[4.0, 43.1.0, 45.0],
[2.0, 45.0, 6664.0],
[-4543.0, 0.0, 43.0]])
答案 0 :(得分:0)
这很笨重,但确实取代了张量中的值。它基于您提到的this answer。
# inputs
inputs = tf.placeholder(shape = [None, None], dtype = tf.float32) # tensor with values to replace
indices = tf.placeholder(shape = [None, 2], dtype = tf.int64) # coordinates to be updated
values = tf.placeholder(shape = [None], dtype = tf.float32) # values corresponding to respective coordinates in "indices"
# set elements in "indices" to 0's
maskValues = tf.tile([0.0], [tf.shape(indices)[0]]) # one 0 for each element in "indices"
mask = tf.SparseTensor(indices, maskValues, tf.shape(inputs, out_type = tf.int64))
maskedInput = tf.multiply(inputs, tf.sparse_tensor_to_dense(mask, default_value = 1.0)) # set values in coordinates in "indices" to 0's, leave everything else intact
# replace elements in "indices" with "values"
delta = tf.SparseTensor(indices, values, tf.shape(inputs, out_type = tf.int64))
outputs = tf.add(maskedInput, tf.sparse_tensor_to_dense(delta)) # add "values" to elements in "indices" (which are 0's so far)
它的作用:
通过运行检查:
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
ins = np.array([[4.0, 43.0, 45.0], [2.0, 22.0, 6664.0], [-4543.0, 0.0, 43.0]])
ind = [[1, 1]]
vals = [45]
outs = sess.run(outputs, feed_dict = { inputs: ins, indices: ind, values: vals })
print(outs)
输出:
[[ 4.000e+00 4.300e+01 4.500e+01]
[ 2.000e+00 4.500e+01 6.664e+03]
[-4.543e+03 0.000e+00 4.300e+01]]