在numpy矩阵中交换零

时间:2017-03-17 13:53:03

标签: python pandas numpy matrix scikit-learn

我有一个像这样的numpy矩阵:

array([[2,  1, 23, 32],
       [34, 3, 3, 0],
       [3, 33, 0, 0],
       [32, 0, 0, 0]], dtype=int32)

现在我想将所有数字移到右边并将零交换到左边,如下所示:

array([[2, 1,  23, 32],
       [0, 34, 3,  3],
       [0, 0,  3,  33],
       [0, 0,  0,  32]], dtype=int32)

是否有一种简短的pythonic方式来实现这一点,也许是使用来自numpy,pandas或scikit-learn的api方法?

6 个答案:

答案 0 :(得分:3)

这是masking -

的矢量化方法
valid_mask = a!=0
flipped_mask = valid_mask.sum(1,keepdims=1) > np.arange(a.shape[1]-1,-1,-1)
a[flipped_mask] = a[valid_mask]
a[~flipped_mask] = 0

示例运行 -

In [90]: a
Out[90]: 
array([[ 2,  1, 23, 32],
       [34,  0,  3,  0],  # <== Added a zero in between for variety
       [ 3, 33,  0,  0],
       [32,  0,  0,  0]])

# After code run -

In [92]: a
Out[92]: 
array([[ 2,  1, 23, 32],
       [ 0,  0, 34,  3],
       [ 0,  0,  3, 33],
       [ 0,  0,  0, 32]])

再运行一个通用示例 -

In [94]: a
Out[94]: 
array([[1, 1, 2, 3, 1, 0, 3, 0, 2, 1],
       [2, 1, 0, 1, 2, 0, 1, 3, 1, 1],
       [1, 2, 0, 3, 0, 3, 2, 0, 2, 2]])

# After code run -

In [96]: a
Out[96]: 
array([[0, 0, 1, 1, 2, 3, 1, 3, 2, 1],
       [0, 0, 2, 1, 1, 2, 1, 3, 1, 1],
       [0, 0, 0, 1, 2, 3, 3, 2, 2, 2]])

运行时测试

处理通用案例的方法 -

# Proposed in this post
def masking_based(a):
    valid_mask = a!=0
    flipped_mask = valid_mask.sum(1,keepdims=1) > np.arange(a.shape[1]-1,-1,-1)
    a[flipped_mask] = a[valid_mask]
    a[~flipped_mask] = 0
    return a

# @Psidom's soln            
def sort_based(a):
    return a[np.arange(a.shape[0])[:, None], (a != 0).argsort(1, kind="mergesort")]

计时 -

In [205]: a = np.random.randint(0,4,(1000,1000))

In [206]: %timeit sort_based(a)
10 loops, best of 3: 30.8 ms per loop

In [207]: %timeit masking_based(a)
100 loops, best of 3: 6.46 ms per loop

In [208]: a = np.random.randint(0,4,(5000,5000))

In [209]: %timeit sort_based(a)
1 loops, best of 3: 961 ms per loop

In [210]: %timeit masking_based(a)
1 loops, best of 3: 151 ms per loop

答案 1 :(得分:2)

pandas方法:

In [181]:
# construct df from array
df = pd.DataFrame(a)
# call apply and call np.roll rowise and roll by the number of zeroes
df.apply(lambda x: np.roll(x, (x == 0).sum()), axis=1).values

Out[181]:
array([[ 2,  1, 23, 32],
       [ 0, 34,  3,  3],
       [ 0,  0,  3, 33],
       [ 0,  0,  0, 32]])

这使用apply,因此我们可以在每行上调用np.roll每行中的零数

答案 2 :(得分:1)

您还可以将numpy.argsortadvanced indexing

一起使用
arr[np.arange(arr.shape[0])[:, None], (arr != 0).argsort(1, kind="mergesort")]

#array([[ 2,  1, 23, 32],
#       [ 0, 34,  3,  3],
#       [ 0,  0,  3, 33],
#       [ 0,  0,  0, 32]], dtype=int32)

答案 3 :(得分:0)

基于非numpy的python中的琐碎尝试 -

>>> arr = [[2,  1, 23, 32],
...        [34, 3, 3, 0],
...        [3, 33, 0, 0],
...        [32, 0, 0, 0]]
... 
>>> t_arr = [[0 for _ in range(cur_list.count(0))]\
            + [i for i in cur_list if i!=0]\
            for cur_list in arr]
>>> t_arr
[[2, 1, 23, 32], [0, 34, 3, 3], [0, 0, 3, 33], [0, 0, 0, 32]]

答案 4 :(得分:0)

您还可以在numpy.ma.sort()的帮助下对蒙面数组执行排序,该{{3}}按照最后一个轴axis=-1对阵列进行就地排序,如下所示:

np.ma.array(a, mask=a!=0).sort()

现在a变为:

array([[ 2,  1, 23, 32],
       [ 0, 34,  3,  3],
       [ 0,  0,  3, 33],
       [ 0,  0,  0, 32]])

唯一的缺点是它没有上面提到的一些方法那么快,但却只有一个简短的单线程。

答案 5 :(得分:0)

基于行滚动的解决方案,本着@EDChum's pandas版本的精神:

def rowroll(arr):
    for row in arr:
        row[:] = np.roll(row,-np.count_nonzero(row))
    return arr
In [221]: rowroll(arr.copy())
Out[221]: 
array([[ 2,  1, 23, 32],
       [ 0, 34,  3,  3],
       [ 0,  0,  3, 33],
       [ 0,  0,  0, 32]])

np.count_nonzero是一种快速编译的查找非零数的方法。 np.where使用它来查找其返回大小。

但是看一下np.roll代码,我觉得这个任务过于复杂,因为它可以用于多个轴。

这看起来更混乱,但我怀疑它速度快,如果不比roll快:

def rowroll(arr):
    for row in arr:
        n = np.count_nonzero(row)
        temp = np.zeros_like(row)
        temp[-n:] = row[:n]
        row[:] = temp
    return arr

roll解决方案要求在原始版本中尾随0,而不是分散的0。