我想在芹菜工人身边使用jupyter内核。每个芹菜工人都会有一个Jupyter内核。
为了实现它,我将覆盖芹菜的默认Worker
类,在初始化工作者时我正在启动jupyter内核,并且使用stop方法我正在关闭jupyter内核。
我面临的当前问题是如何在任务运行时访问任务内的内核实例?
是否有更好的方式来覆盖Worker
应用程序的celery
类定义,而不是app.Worker = CustomWorker
?
这是带有Custom Worker的芹菜配置。
from __future__ import absolute_import, unicode_literals
from celery import Celery
from jupyter_client import MultiKernelManager
app = Celery('proj',
broker='redis://',
backend='redis://',
include=['tasks'])
app.conf.update(
result_expires=3600
)
class CustomWorker(app.Worker):
def __init__(self, *args, **kwargs):
self.km = MultiKernelManager()
self.kernel_id = self.km.start_kernel()
print("Custom initializing")
self.kernel_client = km.get_kernel(kernel_id).client()
super(CustomWorker, self).__init__(*args, **kwargs)
def on_close(self):
self.km.shutdown_kernel(self.kernel_id)
super(CustomWorker, self).on_close()
app.Worker = CustomWorker
if __name__ == '__main__':
app.start()
这是tasks.py
from __future__ import absolute_import, unicode_literals
from celery import app
from celery import Task
from tornado import gen
from jupyter_client import MultiKernelManager
from zmq.eventloop import ioloop
from zmq.eventloop.zmqstream import ZMQStream
ioloop.install()
reply_futures = {}
# This is my celery task where I pass the arbitary python code to execute on
# some celery worker(actually to the corresponding kernel)
@app.task
def pythontask(code):
# I don't know how to get the kernel_client for current celery worker !!?
kernel_client = self.get_current_worker().kernel_client
mid = kernel_client.execute(code)
# defining the callback which will be executed when message arrives on
# zmq stream
def reply_callback(session, stream, msg_list):
idents, msg_parts = session.feed_identities(msg_list)
reply = session.deserialize(msg_parts)
parent_id = reply['parent_header'].get('msg_id')
reply_future = reply_futures.get(parent_id)
if reply_future:
reply_future.set_result(reply)
@gen.coroutine
def execute(kernel_client, code):
msg_id = kernel_client.execute(code)
f = reply_futures[msg_id] = Future()
yield f
raise gen.Return(msg_id)
# initializing the zmq streams and attaching the callback to receive message
# from the kernel
shell_stream = ZMQStream(kernel_client.shell_channel.socket)
iopub_stream = ZMQStream(kernel_client.iopub_channel.socket)
shell_stream.on_recv_stream(partial(reply_callback, kernel_client.session))
iopub_stream.on_recv_stream(partial(reply_callback, kernel_client.session))
# create a IOLoop
loop = ioloop.IOLoop.current()
# listen on the streams
msg_id = loop.run_sync(lambda: execute(kernel_client,code))
print(reply_msgs[msg_id])
reply_msgs[msg_id] = []
# Disable callback and automatic receiving.
shell_stream.on_recv_stream(None)
iopub_stream.on_recv_stream(None)
答案 0 :(得分:1)
将该工作组实例信息添加到请求对象解决了我的问题。为此,我覆盖了工人类的_process_task
方法。
def _process_task(self, req):
try:
req.kwargs['kernel_client'] = self.kernel_client
print("printing from _process_task {}".format(req.kwargs))
req.execute_using_pool(self.pool)
except TaskRevokedError:
try:
self._quick_release() # Issue 877
except AttributeError:
pass
except Exception as exc:
logger.critical('Internal error: %r\n%s',exc, traceback.format_exc(), exc_info=True)
这是我访问kernel_client
@app.task(bind=True)
def pythontask(self,code, kernel_client=None):
mid = kernel_client.execute(code)
print("{}".format(kernel_client))
print("{}".format(mid))
这件事只有在我以独奏模式启动工作人员时才有效,否则不会引发一些酸洗错误。无论如何使用独奏工作者是我的要求所以这个解决方案适合我