我有一个像这样的数组:
>>> a = np.arange(60).reshape([3,4,5])
>>> a
array([[[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]],
[[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29],
[30, 31, 32, 33, 34],
[35, 36, 37, 38, 39]],
[[40, 41, 42, 43, 44],
[45, 46, 47, 48, 49],
[50, 51, 52, 53, 54],
[55, 56, 57, 58, 59]]])
我想沿其中一个维度检索前k个值。例如,我将选择k = 2并沿中间维度。
我尝试使用argpartition
并且似乎做了正确的事情,但我在使用它的输出时无法从原始数组中检索值。以下是我如何使用argpartition:
>>> indices = np.argpartition(a, 2, axis=1)
>>> indices
array([[[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3]],
[[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3]],
[[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3]]])
>>> indices[:,-2:,:]
array([[[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3]],
[[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3]],
[[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3]]])
但我无法通过切片使用这些索引来获取值。
>>> a[:,indices[:,-2:,:],:].shape
(3, 3, 2, 5, 5)
我期待看到一个形状(3,2,5)
的数组(因为我正在寻找沿中轴的前2位),我想这看起来像这样:
>>> magic_output
array([[[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]],
[[30, 31, 32, 33, 34],
[35, 36, 37, 38, 39]],
[[50, 51, 52, 53, 54],
[55, 56, 57, 58, 59]]])
如何使用argpartition
?
答案 0 :(得分:2)
好np.argpartition
获得最小的k
索引。因此,要获得最高k
索引,我们需要沿所需轴使用否定输入数组。然后,我们需要使用这些索引使用NumPy's advanced-indexing
索引到该轴并具有所需的输出。
因此,实施将是 -
k = 2
m,n = a.shape[0], a.shape[2]
idx = np.argpartition(-a,k,axis=1)[:,k-1::-1]
out = a[np.arange(m)[:,None,None], idx, np.arange(n)]
示例运行 -
1)输入:
In [180]: a
Out[180]:
array([[[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]],
[[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29],
[30, 31, 32, 33, 34],
[35, 36, 37, 38, 39]],
[[40, 41, 42, 43, 44],
[45, 46, 47, 48, 49],
[50, 51, 52, 53, 54],
[55, 56, 57, 58, 59]]])
2)提议的代码:
In [206]: k = 2
...: m,n = a.shape[0], a.shape[2]
...: idx = np.argpartition(-a,k,axis=1)[:,k-1::-1]
...: out = a[np.arange(m)[:,None,None], idx, np.arange(n)]
...:
3)检查中间结果和输出:
In [207]: idx
Out[207]:
array([[[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3]],
[[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3]],
[[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3]]])
In [208]: out
Out[208]:
array([[[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]],
[[30, 31, 32, 33, 34],
[35, 36, 37, 38, 39]],
[[50, 51, 52, 53, 54],
[55, 56, 57, 58, 59]]])
答案 1 :(得分:1)
您不需要argpartition
只需使用np.sort()
沿第二轴对数组进行排序,然后从该轴中选择最后两项:
np.sort(a, 2)[:, -2:, ]
以下是关于数组的随机播放版本的示例:
In [15]: np.random.shuffle(a)
In [16]: a
Out[16]:
array([[[40, 41, 42, 43, 44],
[45, 46, 47, 48, 49],
[50, 51, 52, 53, 54],
[55, 56, 57, 58, 59]],
[[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]],
[[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29],
[30, 31, 32, 33, 34],
[35, 36, 37, 38, 39]]])
In [17]: np.sort(a, 2)[:, -2:, ]
Out[17]:
array([[[50, 51, 52, 53, 54],
[55, 56, 57, 58, 59]],
[[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]],
[[30, 31, 32, 33, 34],
[35, 36, 37, 38, 39]]])