ValueError:参数必须是密集张量--Python和TensorFlow

时间:2017-03-16 01:24:48

标签: python tensorflow

我正在提取可能与我遇到的问题相关的部分代码:

from PIL import Image
import tensorflow as tf

data = Image.open('1-enhanced.png')
...
...
raw_data = data
raw_img = raw_data

我收到以下长信息,我不确定如何分析(你对这里发生的事情有任何想法):

Traceback (most recent call last):
  File "C:\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 490, in apply_op
    preferred_dtype=default_dtype)
  File "C:\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 669, in convert_to_tensor
    ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
  File "C:\Python35\lib\site-packages\tensorflow\python\framework\constant_op.py", line 176, in _constant_tensor_conversion_function
    return constant(v, dtype=dtype, name=name)
  File "C:\Python35\lib\site-packages\tensorflow\python\framework\constant_op.py", line 165, in constant
    tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape))
  File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_util.py", line 376, in make_tensor_proto
    _GetDenseDimensions(values)))
ValueError: Argument must be a dense tensor: <PIL.PngImagePlugin.PngImageFile image mode=L size=150x150 at 0x1E07D3C0AC8> - got shape [150, 150], but wanted [].

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "conv_visuals.py", line 54, in <module>
    x = tf.reshape(raw_data, shape=[-1,150,150,1])
  File "C:\Python35\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 2448, in reshape
    name=name)
  File "C:\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 503, in apply_op
    as_ref=input_arg.is_ref).dtype.name
  File "C:\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 669, in convert_to_tensor
    ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
  File "C:\Python35\lib\site-packages\tensorflow\python\framework\constant_op.py", line 176, in _constant_tensor_conversion_function
    return constant(v, dtype=dtype, name=name)
  File "C:\Python35\lib\site-packages\tensorflow\python\framework\constant_op.py", line 165, in constant
    tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape))
  File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_util.py", line 376, in make_tensor_proto
    _GetDenseDimensions(values)))
ValueError: Argument must be a dense tensor: <PIL.PngImagePlugin.PngImageFile image mode=L size=150x150 at 0x1E07D3C0AC8> - got shape [150, 150], but wanted [].

感谢。

1 个答案:

答案 0 :(得分:8)

只是发布评论,因为它似乎解决了问题:

尝试将其转换为numpy数组:

numpy.asarray(Image.open('1-enhanced.png').convert('L'))