我有一个标量函数f(a,b,c,d)
,它具有以下排列对称性
f(a,b,c,d) = f(c,d,a,b) = -f(b,a,d,c) = -f(d,c,b,a)
我用它来完全填充4D阵列。下面的代码(使用python / NumPy)可以工作:
A = np.zeros((N,N,N,N))
for a in range(N):
for b in range(N):
for c in range(N):
for d in range(N):
A[a,b,c,d] = f(a,b,c,d)
但显然我想利用对称性来减少这部分代码的执行时间。我试过了:
A = np.zeros((N,N,N,N))
ab = 0
for a in range(N):
for b in range(N):
ab += 1
cd = 0
for c in range(N):
for d in range(N):
cd += 1
if ab >= cd:
A[a,b,c,d] = A[c,d,a,b] = f(a,b,c,d)
将执行时间缩短一半。但是为了最后的对称性我试过了:
A = np.zeros((N,N,N,N))
ab = 0
for a in range(N):
for b in range(N):
ab += 1
cd = 0
for c in range(N):
for d in range(N):
cd += 1
if ab >= cd:
if ((a >= b) or (c >= d)):
A[a,b,c,d] = A[c,d,a,b] = f(a,b,c,d)
A[b,a,d,c] = A[d,c,b,a] = -A[a,b,c,d]
哪个有效,但并没有让我接近另一个加速的因素。我不认为这是正确的理由,但不明白为什么。
我怎样才能更好地利用这种特定的排列对称?
答案 0 :(得分:1)
有趣的问题!
对于N=3
,应该有81个组合,包含4个元素。
使用循环,您可以创建156。
看起来重复的主要来源是or
中的(a >= b) or (c >= d)
,它太过宽松了。但(a >= b) and (c >= d)
限制性太强了。
但您可以比较a + c >= b + d
。要获得几毫秒(如果有的话),您可以将a + c
保存为ac
在第三个循环中:
A = np.zeros((N,N,N,N))
ab = 0
for a in range(N):
for b in range(N):
ab += 1
cd = 0
for c in range(N):
ac = a + c
for d in range(N):
cd += 1
if (ab >= cd and ac >= b+d):
A[a,b,c,d] = A[c,d,a,b] = f(a,b,c,d)
A[b,a,d,c] = A[d,c,b,a] = -A[a,b,c,d]
使用此代码,我们创建了112个组合,因此重复次数少于您的方法,但可能仍有一些优化。
这是我用来计算创建组合数量的代码:
from itertools import product
N = 3
ab = 0
all_combinations = set(product(range(N), repeat=4))
zeroes = ((x, x, y, y) for x, y in product(range(N), repeat=2))
calculated = list()
for a in range(N):
for b in range(N):
ab += 1
cd = 0
for c in range(N):
ac = a + c
for d in range(N):
cd += 1
if (ab >= cd and ac >= b + d) and not (a == b and c == d):
calculated.append((a, b, c, d))
calculated.append((c, d, a, b))
calculated.append((b, a, d, c))
calculated.append((d, c, b, a))
missing = all_combinations - set(calculated) - set(zeroes)
if missing:
print "Some sets weren't calculated :"
for s in missing:
print s
else:
print "All cases were covered"
print len(calculated)
使用and not (a==b and c==d)
时,该数字将降至88。