我有一个名单列表,如:
names = ['A', 'B', 'C', 'D']
和文件清单,在每个文件中都提到了一些这些名称。
document =[['A', 'B'], ['C', 'B', 'K'],['A', 'B', 'C', 'D', 'Z']]
我想得到一个输出作为共现矩阵,如:
A B C D
A 0 2 1 1
B 2 0 2 1
C 1 2 0 1
D 1 1 1 0
R中存在解决此问题的解决方案(Creating co-occurrence matrix),但我无法在Python中执行此操作。我想在熊猫中做到这一点,但还没有进展!
答案 0 :(得分:8)
from collections import OrderedDict
document = [['A', 'B'], ['C', 'B'], ['A', 'B', 'C', 'D']]
names = ['A', 'B', 'C', 'D']
occurrences = OrderedDict((name, OrderedDict((name, 0) for name in names)) for name in names)
# Find the co-occurrences:
for l in document:
for i in range(len(l)):
for item in l[:i] + l[i + 1:]:
occurrences[l[i]][item] += 1
# Print the matrix:
print(' ', ' '.join(occurrences.keys()))
for name, values in occurrences.items():
print(name, ' '.join(str(i) for i in values.values()))
输出;
A B C D
A 0 2 1 1
B 2 0 2 1
C 1 2 0 1
D 1 1 1 0
答案 1 :(得分:5)
以下是使用itertools
模块中的Counter
和collections
类的另一种解决方案。
import numpy
import itertools
from collections import Counter
document =[['A', 'B'], ['C', 'B'],['A', 'B', 'C', 'D']]
# Get all of the unique entries you have
varnames = tuple(sorted(set(itertools.chain(*document))))
# Get a list of all of the combinations you have
expanded = [tuple(itertools.combinations(d, 2)) for d in document]
expanded = itertools.chain(*expanded)
# Sort the combinations so that A,B and B,A are treated the same
expanded = [tuple(sorted(d)) for d in expanded]
# count the combinations
c = Counter(expanded)
# Create the table
table = numpy.zeros((len(varnames),len(varnames)), dtype=int)
for i, v1 in enumerate(varnames):
for j, v2 in enumerate(varnames[i:]):
j = j + i
table[i, j] = c[v1, v2]
table[j, i] = c[v1, v2]
# Display the output
for row in table:
print(row)
输出(可以很容易变成DataFrame)是:
[0 2 1 1]
[2 0 2 1]
[1 2 0 1]
[1 1 1 0]
答案 2 :(得分:5)
另一种选择是使用构造函数
csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
来自data
,row_ind
和col_ind
符合a[row_ind[k], col_ind[k]] = data[k]
的{{1}}
关系row_ind
。
诀窍是通过迭代文档并创建元组列表(doc_id,word_id)来生成col_ind
和data
。 import numpy as np
import itertools
from scipy.sparse import csr_matrix
def create_co_occurences_matrix(allowed_words, documents):
print(f"allowed_words:\n{allowed_words}")
print(f"documents:\n{documents}")
word_to_id = dict(zip(allowed_words, range(len(allowed_words))))
documents_as_ids = [np.sort([word_to_id[w] for w in doc if w in word_to_id]).astype('uint32') for doc in documents]
row_ind, col_ind = zip(*itertools.chain(*[[(i, w) for w in doc] for i, doc in enumerate(documents_as_ids)]))
data = np.ones(len(row_ind), dtype='uint32') # use unsigned int for better memory utilization
max_word_id = max(itertools.chain(*documents_as_ids)) + 1
docs_words_matrix = csr_matrix((data, (row_ind, col_ind)), shape=(len(documents_as_ids), max_word_id)) # efficient arithmetic operations with CSR * CSR
words_cooc_matrix = docs_words_matrix.T * docs_words_matrix # multiplying docs_words_matrix with its transpose matrix would generate the co-occurences matrix
words_cooc_matrix.setdiag(0)
print(f"words_cooc_matrix:\n{words_cooc_matrix.todense()}")
return words_cooc_matrix, word_to_id
只是一个相同长度的矢量。
将docs-words矩阵乘以其转置将为您提供共生矩阵。
此外,这在运行时和内存使用方面都很有效,因此它也应该处理大型语料库。
allowed_words = ['A', 'B', 'C', 'D']
documents = [['A', 'B'], ['C', 'B', 'K'],['A', 'B', 'C', 'D', 'Z']]
words_cooc_matrix, word_to_id = create_co_occurences_matrix(allowed_words, documents)
运行示例:
allowed_words:
['A', 'B', 'C', 'D']
documents:
[['A', 'B'], ['C', 'B', 'K'], ['A', 'B', 'C', 'D', 'Z']]
words_cooc_matrix:
[[0 2 1 1]
[2 0 2 1]
[1 2 0 1]
[1 1 1 0]]
输出:
store
答案 3 :(得分:2)
显然,这可以扩展到您的目的,但它会记住一般操作:
import math
for a in 'ABCD':
for b in 'ABCD':
count = 0
for x in document:
if a != b:
if a in x and b in x:
count += 1
else:
n = x.count(a)
if n >= 2:
count += math.factorial(n)/math.factorial(n - 2)/2
print '{} x {} = {}'.format(a, b, count)
答案 4 :(得分:2)
您也可以使用矩阵技巧来查找共生矩阵。希望当你的词汇量更大时,这种方法很有效。
import scipy.sparse as sp
voc2id = dict(zip(names, range(len(names))))
rows, cols, vals = [], [], []
for r, d in enumerate(document):
for e in d:
if voc2id.get(e) is not None:
rows.append(r)
cols.append(voc2id[e])
vals.append(1)
X = sp.csr_matrix((vals, (rows, cols)))
现在,你可以通过简单的乘法X.T
与X
找到共生矩阵
Xc = (X.T * X) # coocurrence matrix
Xc.setdiag(0)
print(Xc.toarray())
答案 5 :(得分:0)
我也面临着同样的问题...所以我附带了这段代码。该代码考虑了上下文窗口,然后确定了co_occurance矩阵。
希望这对您有帮助...
def countOccurences(word,context_window):
"""
This function returns the count of context word.
"""
return context_window.count(word)
def co_occurance(feature_dict,corpus,window = 5):
"""
This function returns co_occurance matrix for the given window size. Default is 5.
"""
length = len(feature_dict)
co_matrix = np.zeros([length,length]) # n is the count of all words
corpus_len = len(corpus)
for focus_word in top_features:
for context_word in top_features[top_features.index(focus_word):]:
# print(feature_dict[context_word])
if focus_word == context_word:
co_matrix[feature_dict[focus_word],feature_dict[context_word]] = 0
else:
start_index = 0
count = 0
while(focus_word in corpus[start_index:]):
# get the index of focus word
start_index = corpus.index(focus_word,start_index)
fi,li = max(0,start_index - window) , min(corpus_len-1,start_index + window)
count += countOccurences(context_word,corpus[fi:li+1])
# updating start index
start_index += 1
# update [Aij]
co_matrix[feature_dict[focus_word],feature_dict[context_word]] = count
# update [Aji]
co_matrix[feature_dict[context_word],feature_dict[focus_word]] = count
return co_matrix
答案 6 :(得分:0)
'''''对于2的窗口,data_corpus是由文本数据组成的系列,word是由为其构建共现矩阵的单词组成的列表'''
“ co_oc是同现矩阵”
co_oc=pd.DataFrame(index=words,columns=words)
for j in tqdm(data_corpus):
k=j.split()
for l in range(len(k)):
if l>=5 and l<(len(k)-6):
if k[l] in words:
for m in range(l-5,l+6):
if m==l:
continue
elif k[m] in words:
co_oc[k[l]][k[m]]+=1
elif l>=(len(k)-6):
if k[l] in words:
for m in range(l-5,len(k)):
if m==l:
continue
elif k[m] in words:
co_oc[k[l]][k[m]]+=1
else:
if k[l] in words:
for m in range(0,l+5):
if m==l:
continue
elif k[m] in words:
co_oc[k[l]][k[m]]+=1
print(co_oc.head())
答案 7 :(得分:0)
我们可以使用NetworkX
大大简化这一过程。 names
是我们要考虑的节点,document
中的列表包含要连接的节点。
我们可以连接每个子列表中长度为2 combinations
的节点,并创建一个MultiGraph
来解决共现问题:
import networkx as nx
from itertools import combinations
G = nx.MultiGraph()
G = nx.from_edgelist((c for n_nodes in document for c in combinations(n_nodes, r=2)),
create_using=nx.MultiGraph)
nx.to_pandas_adjacency(G, nodelist=names, dtype='int')
A B C D
A 0 2 1 1
B 2 0 2 1
C 1 2 0 1
D 1 1 1 0