Python中单词列表中的共现矩阵

时间:2017-03-15 15:42:13

标签: python list matrix find-occurrences sklearn-pandas

我有一个名单列表,如:

names = ['A', 'B', 'C', 'D']

和文件清单,在每个文件中都提到了一些这些名称。

document =[['A', 'B'], ['C', 'B', 'K'],['A', 'B', 'C', 'D', 'Z']]

我想得到一个输出作为共现矩阵,如:

  A  B  C  D
A 0  2  1  1
B 2  0  2  1
C 1  2  0  1
D 1  1  1  0

R中存在解决此问题的解决方案(Creating co-occurrence matrix),但我无法在Python中执行此操作。我想在熊猫中做到这一点,但还没有进展!

8 个答案:

答案 0 :(得分:8)

from collections import OrderedDict

document = [['A', 'B'], ['C', 'B'], ['A', 'B', 'C', 'D']]
names = ['A', 'B', 'C', 'D']

occurrences = OrderedDict((name, OrderedDict((name, 0) for name in names)) for name in names)

# Find the co-occurrences:
for l in document:
    for i in range(len(l)):
        for item in l[:i] + l[i + 1:]:
            occurrences[l[i]][item] += 1

# Print the matrix:
print(' ', ' '.join(occurrences.keys()))
for name, values in occurrences.items():
    print(name, ' '.join(str(i) for i in values.values()))

输出;

  A B C D
A 0 2 1 1 
B 2 0 2 1 
C 1 2 0 1 
D 1 1 1 0 

答案 1 :(得分:5)

以下是使用itertools模块中的Countercollections类的另一种解决方案。

import numpy
import itertools
from collections import Counter

document =[['A', 'B'], ['C', 'B'],['A', 'B', 'C', 'D']]

# Get all of the unique entries you have
varnames = tuple(sorted(set(itertools.chain(*document))))

# Get a list of all of the combinations you have
expanded = [tuple(itertools.combinations(d, 2)) for d in document]
expanded = itertools.chain(*expanded)

# Sort the combinations so that A,B and B,A are treated the same
expanded = [tuple(sorted(d)) for d in expanded]

# count the combinations
c = Counter(expanded)


# Create the table
table = numpy.zeros((len(varnames),len(varnames)), dtype=int)

for i, v1 in enumerate(varnames):
    for j, v2 in enumerate(varnames[i:]):        
        j = j + i 
        table[i, j] = c[v1, v2]
        table[j, i] = c[v1, v2]

# Display the output
for row in table:
    print(row)

输出(可以很容易变成DataFrame)是:

[0 2 1 1]
[2 0 2 1]
[1 2 0 1]
[1 1 1 0]

答案 2 :(得分:5)

另一种选择是使用构造函数 csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])来自datarow_indcol_ind符合a[row_ind[k], col_ind[k]] = data[k]的{​​{1}}             关系row_ind

诀窍是通过迭代文档并创建元组列表(doc_id,word_id)来生成col_inddataimport numpy as np import itertools from scipy.sparse import csr_matrix def create_co_occurences_matrix(allowed_words, documents): print(f"allowed_words:\n{allowed_words}") print(f"documents:\n{documents}") word_to_id = dict(zip(allowed_words, range(len(allowed_words)))) documents_as_ids = [np.sort([word_to_id[w] for w in doc if w in word_to_id]).astype('uint32') for doc in documents] row_ind, col_ind = zip(*itertools.chain(*[[(i, w) for w in doc] for i, doc in enumerate(documents_as_ids)])) data = np.ones(len(row_ind), dtype='uint32') # use unsigned int for better memory utilization max_word_id = max(itertools.chain(*documents_as_ids)) + 1 docs_words_matrix = csr_matrix((data, (row_ind, col_ind)), shape=(len(documents_as_ids), max_word_id)) # efficient arithmetic operations with CSR * CSR words_cooc_matrix = docs_words_matrix.T * docs_words_matrix # multiplying docs_words_matrix with its transpose matrix would generate the co-occurences matrix words_cooc_matrix.setdiag(0) print(f"words_cooc_matrix:\n{words_cooc_matrix.todense()}") return words_cooc_matrix, word_to_id 只是一个相同长度的矢量。

将docs-words矩阵乘以其转置将为您提供共生矩阵。

此外,这在运行时和内存使用方面都很有效,因此它也应该处理大型语料库。

allowed_words = ['A', 'B', 'C', 'D']
documents = [['A', 'B'], ['C', 'B', 'K'],['A', 'B', 'C', 'D', 'Z']]
words_cooc_matrix, word_to_id = create_co_occurences_matrix(allowed_words, documents)

运行示例:

allowed_words:
['A', 'B', 'C', 'D']

documents:
[['A', 'B'], ['C', 'B', 'K'], ['A', 'B', 'C', 'D', 'Z']]

words_cooc_matrix:
[[0 2 1 1]
 [2 0 2 1]
 [1 2 0 1]
 [1 1 1 0]]

输出:

store

答案 3 :(得分:2)

显然,这可以扩展到您的目的,但它会记住一般操作:

import math

for a in 'ABCD':
    for b in 'ABCD':
        count = 0

        for x in document:
            if a != b:
                if a in x and b in x:
                    count += 1

            else:
                n = x.count(a)
                if n >= 2:
                    count += math.factorial(n)/math.factorial(n - 2)/2

        print '{} x {} = {}'.format(a, b, count)

答案 4 :(得分:2)

您也可以使用矩阵技巧来查找共生矩阵。希望当你的词汇量更大时,这种方法很有效。

import scipy.sparse as sp
voc2id = dict(zip(names, range(len(names))))
rows, cols, vals = [], [], []
for r, d in enumerate(document):
    for e in d:
        if voc2id.get(e) is not None:
            rows.append(r)
            cols.append(voc2id[e])
            vals.append(1)
X = sp.csr_matrix((vals, (rows, cols)))

现在,你可以通过简单的乘法X.TX找到共生矩阵

Xc = (X.T * X) # coocurrence matrix
Xc.setdiag(0)
print(Xc.toarray())

答案 5 :(得分:0)

我也面临着同样的问题...所以我附带了这段代码。该代码考虑了上下文窗口,然后确定了co_occurance矩阵。

希望这对您有帮助...

def countOccurences(word,context_window): 

    """
    This function returns the count of context word.
    """ 
    return context_window.count(word)

def co_occurance(feature_dict,corpus,window = 5):
    """
    This function returns co_occurance matrix for the given window size. Default is 5.

    """
    length = len(feature_dict)
    co_matrix = np.zeros([length,length]) # n is the count of all words

    corpus_len = len(corpus)
    for focus_word in top_features:

        for context_word in top_features[top_features.index(focus_word):]:
            # print(feature_dict[context_word])
            if focus_word == context_word:
                co_matrix[feature_dict[focus_word],feature_dict[context_word]] = 0
            else:
                start_index = 0
                count = 0
                while(focus_word in corpus[start_index:]):

                    # get the index of focus word
                    start_index = corpus.index(focus_word,start_index)
                    fi,li = max(0,start_index - window) , min(corpus_len-1,start_index + window)

                    count += countOccurences(context_word,corpus[fi:li+1])
                    # updating start index
                    start_index += 1

                # update [Aij]
                co_matrix[feature_dict[focus_word],feature_dict[context_word]] = count
                # update [Aji]
                co_matrix[feature_dict[context_word],feature_dict[focus_word]] = count
    return co_matrix

答案 6 :(得分:0)

'''''对于2的窗口,data_corpus是由文本数据组成的系列,word是由为其构建共现矩阵的单词组成的列表'''

“ co_oc是同现矩阵”

co_oc=pd.DataFrame(index=words,columns=words)

for j in tqdm(data_corpus):

    k=j.split()

    for l in range(len(k)):

        if l>=5 and l<(len(k)-6):
            if k[l] in words:
                for m in range(l-5,l+6):
                    if m==l:
                        continue
                    elif k[m] in words:
                        co_oc[k[l]][k[m]]+=1

        elif l>=(len(k)-6):
            if k[l] in words:
                for m in range(l-5,len(k)):
                    if m==l:
                        continue
                    elif k[m] in words:
                        co_oc[k[l]][k[m]]+=1

        else:
            if k[l] in words:
                for m in range(0,l+5):
                    if m==l:
                        continue
                    elif k[m] in words:
                        co_oc[k[l]][k[m]]+=1
print(co_oc.head())

答案 7 :(得分:0)

我们可以使用NetworkX大大简化这一过程。 names是我们要考虑的节点,document中的列表包含要连接的节点。

我们可以连接每个子列表中长度为2 combinations的节点,并创建一个MultiGraph来解决共现问题:

import networkx as nx
from itertools import combinations

G = nx.MultiGraph()
G = nx.from_edgelist((c for n_nodes in document for c in combinations(n_nodes, r=2)),
                     create_using=nx.MultiGraph)
nx.to_pandas_adjacency(G, nodelist=names, dtype='int')

   A  B  C  D
A  0  2  1  1
B  2  0  2  1
C  1  2  0  1
D  1  1  1  0