我正在尝试使用DL4J库实现像https://www.youtube.com/watch?v=Fp9kzoAxsA4这样的GANN(遗传算法神经网络)。
遗传学习变量:
每个生物的神经网络图层:
这是我对生物对象的createBrain
方法:
private void createBrain() {
Layer inputLayer = new DenseLayer.Builder()
// 5 eye sensors
.nIn(5)
.nOut(5)
// How do I initialize custom weights using creature genes (this.genes)?
// .weightInit(WeightInit.ZERO)
.activation(Activation.RELU)
.build();
Layer outputLayer = new OutputLayer.Builder()
.nIn(5)
.nOut(1)
.activation(Activation.IDENTITY)
.lossFunction(LossFunctions.LossFunction.MSE)
.build();
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(6)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.iterations(1)
.learningRate(0.006)
.updater(Updater.NESTEROVS).momentum(0.9)
.list()
.layer(0,inputLayer)
.layer(1, outputLayer)
.pretrain(false).backprop(true)
.build();
this.brain = new MultiLayerNetwork(conf);
this.brain.init();
}
如果它可能有帮助我已推到这个回购 https://github.com/kareem3d/GeneticNeuralNetwork
这是Creature类 https://github.com/kareem3d/GeneticNeuralNetwork/blob/master/src/main/java/com/mycompany/gaan/Creature.java
我是机器学习的学生,所以如果你看到任何明显的错误请告诉我,谢谢:)
答案 0 :(得分:2)
我不知道您是否可以在图层配置中设置权重(我无法在API文档中看到),但您可以在初始化模型后获取并设置为网络参数。
要为图层单独设置它们,您可以按照此示例进行操作;
Iterator paramap_iterator = convolutionalEncoder.paramTable().entrySet().iterator();
while(paramap_iterator.hasNext()) {
Map.Entry<String, INDArray> me = (Map.Entry<String, INDArray>) paramap_iterator.next();
System.out.println(me.getKey());//print key
System.out.println(Arrays.toString(me.getValue().shape()));//print shape of INDArray
convolutionalEncoder.setParam(me.getKey(), Nd4j.rand(me.getValue().shape()));//set some random values
}
如果您想一次性设置网络的所有参数,可以使用setParams()
和params()
,例如;
INDArray all_params = convolutionalEncoder.params();
convolutionalEncoder.setParams(Nd4j.rand(all_params.shape()));//set random values with the same shape
您可以查看API以获取更多信息; https://deeplearning4j.org/doc/org/deeplearning4j/nn/api/Model.html#params--
答案 1 :(得分:0)
对我有用:
int inputNum = 4;
int outputNum = 3;
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(123)
.layer(new EmbeddingLayer.Builder()
.nIn(inputNum) // Number of input datapoints.
.nOut(8) // Number of output datapoints.
.activation(Activation.RELU) // Activation function.
.weightInit(WeightInit.XAVIER) // Weight initialization.
.build())
.list()
.layer(new DenseLayer.Builder()
.nIn(inputNum) // Number of input datapoints.
.nOut(8) // Number of output datapoints.
.activation(Activation.RELU) // Activation function.
.weightInit(WeightInit.XAVIER) // Weight initialization.
.build())
.layer(new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.nIn(8)
.nOut(outputNum)
.activation(Activation.SOFTMAX)
.weightInit(WeightInit.XAVIER)
.build())
.pretrain(false).backprop(false)
.build();
MultiLayerNetwork multiLayerNetwork = new MultiLayerNetwork(conf);
multiLayerNetwork.init();
Map<String, INDArray> paramTable = multiLayerNetwork.paramTable();
Set<String> keys = paramTable.keySet();
Iterator<String> it = keys.iterator();
while (it.hasNext()) {
String key = it.next();
INDArray values = paramTable.get(key);
System.out.print(key+" ");//print keys
System.out.println(Arrays.toString(values.shape()));//print shape of INDArray
System.out.println(values);
multiLayerNetwork.setParam(key, Nd4j.rand(values.shape()));//set some random values
}