"量化" TENSorflow Graph to float16

时间:2017-03-14 17:44:14

标签: tensorflow

如何将Tensorflow图表从使用float32转换为float16?目前,存在用于量化和转换为八位整数的图优化。

尝试将float32权重加载到float16图表失败,并显示:

DataLossError (see above for traceback): Invalid size in bundle entry: key model/conv5_1/biases; stored size 1536; expected size 768
     [[Node: save/RestoreV2_16 = RestoreV2[dtypes=[DT_HALF], _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save/Const_0, save/RestoreV2_16/tensor_names, save/RestoreV2_16/shape_and_slices)]]
     [[Node: save/RestoreV2_3/_39 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/gpu:0", send_device="/job:localhost/replica:0/task:0/cpu:0", send_device_incarnation=1, tensor_name="edge_107_save/RestoreV2_3", tensor_type=DT_HALF, _device="/job:localhost/replica:0/task:0/gpu:0"]()]]

2 个答案:

答案 0 :(得分:6)

我认为我的解决方案绝对不是最好的,也不是最直接的解决方案,但没有其他人发布任何内容:

我所做的是以完全精确的方式训练网络并将其保存在检查点中。然后我构建了一个网络副本,将所有需要的变量设置为tf.float16的dtype并删除所有训练节点。最后,我按以下方式加载和转换变量:

previous_variables = [
  var_name for var_name, _
  in tf.contrib.framework.list_variables('path-to-checkpoint-file')]
#print(previous_variables)
sess.run(tf.global_variables_initializer())
restore_map = {}
for variable in tf.global_variables():
    if variable.op.name in previous_variables:
        var = tf.contrib.framework.load_variable(
            'path-to-checkpoint-file', variable.op.name)
        if(var.dtype == np.float32):
            tf.add_to_collection('assignOps', variable.assign(
                tf.cast(var, tf.float16)))
        else:
            tf.add_to_collection('assignOps', variable.assign(var))
sess.run(tf.get_collection('assignOps'))

如果你不想转换float32的张量,这显然有问题,我很幸运没有,因为我想将所有节点转换为float16精度。如果你有那些你可以进一步过滤其他if语句。我希望这能回答你的问题。

答案 1 :(得分:0)

我遇到了这个问题,但是我正在加载一个子图,其中包含一些需要加载或转换的变量,而有些则不需要。 在@Jendrik的基础上,这是一个返回分配操作的函数,给定一个字典,该字典将已保存的变量映射到新图形:

def assign_and_convert_halfPrecision(restore_dictinary, CHECKPOINT_PATH):

    # Iterate over the dictionary containing the variables to load
    for variable_name_old, varible_new in restore_dictinary.items():

        # Load the variable from the checkpoint
        var = tf.contrib.framework.load_variable(CHECKPOINT_PATH, variable_name_old)

        # Assign to new graph
        if(var.dtype == np.float32) and (varible_new.dtype == np.float16):
            # If the variable is float16 in the new graph, we cast it
            tf.add_to_collection('assignOps', varible_new.assign(tf.cast(var, tf.float16)))
        else:
            # If the variable in the old graph is float16 or the new variable is float32, 
            # we load it directly
            tf.add_to_collection('assignOps', varible_new.assign(var))


    # Return the operation
    return tf.get_collection('assignOps')

要使用它,只需执行以下操作:

# Create a trivial dictionary (all custom loading can be added here, like change of scope names)
restore_dictionary = dict()
for a in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=''):
    restore_dictionary[a.name[:-2]] = a

# Create the assignment and conversion op
assign_operation = assign_and_convert_halfPrecision(restore_dictionary, CHECKPOINT_PATH)

# Load
sess.run(assign_operation)

可以通过修改字典来控制加载,避免不应该加载的变量或更改要加载的变量的范围。