我是机器学习和numpy的新手,我一直试图在sklearn上运行渐变下降来自sklearn,我的实现适用于小型随机数据集,但在波士顿数据集中它正在产生这些警告
<string>:12: RuntimeWarning: overflow encountered in square
<string>:15: RuntimeWarning: invalid value encountered in subtract
然后输出
Output
array([ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan])
这是我的梯度下降代码
import numpy as np
from sklearn.datasets import load_boston
from matplotlib import pyplot as plt
def gradient_descent(x,y,alpha,theta):
m=y.shape[0]
xtranspose = x.transpose()
i=0
cost =488
while cost>0.5:
hyp = np.dot(x, theta)
loss = hyp - y
cost = np.sum(loss ** 2)/(2*m)
plt.scatter(i,cost)
gradient = np.dot(xtranspose, loss)/m
theta = theta - alpha * gradient
i=i+1
plt.show()
return theta
dataset = load_boston()
m,n = dataset['data'].shape
x = np.ones((m,n+1))
x[:,:-1] = dataset['data']
y= dataset['target']
alpha=0.005
theta=np.ones(x.shape[1])
theta = gradient_descent(x,y,alpha,theta)
答案 0 :(得分:0)
当输入为整数时,看到此类溢出警告并不罕见。首先尝试将它们转换为浮点数。如果损失是一个数组,则可以使用loss = np.array(loss,dtype = float)。如果损失是整数,则可以使用loss = float(loss)。