我有一个带有日期索引的熊猫数据框和100列股票价格。
我想要每只股票,当价格发生变化时,延迟时间为2,然后是向前填充。
例如2列的数据(我的数据的子集):
Stock A Stock B
1/1/2000 100 50
1/2/2000 100 50
1/3/2000 100 50
1/4/2000 350 50
1/5/2000 350 50
1/6/2000 350 50
1/7/2000 350 25
1/8/2000 350 25
1/9/2000 500 25
1/10/2000 500 25
1/11/2000 500 25
1/12/2000 500 150
1/1/2001 250 150
1/2/2001 250 150
1/3/2001 250 150
1/4/2001 250 150
1/5/2001 250 150
1/6/2001 250 150
1/7/2001 250 150
1/8/2001 75 150
1/9/2001 75 150
1/10/2001 75 25
1/11/2001 75 25
1/12/2001 75 25
1/1/2002 75 25
现在我想要的输出是:
Stock A Stock B
1/1/2000
1/2/2000
1/3/2000
1/4/2000
1/5/2000 100
1/6/2000 100
1/7/2000 100
1/8/2000 100 50
1/9/2000 100 50
1/10/2000 350 50
1/11/2000 350 50
1/12/2000 350 50
1/1/2001 350 25
1/2/2001 500 25
1/3/2001 500 25
1/4/2001 500 25
1/5/2001 500 25
1/6/2001 500 25
1/7/2001 500 25
1/8/2001 500 25
1/9/2001 250 25
1/10/2001 250 25
1/11/2001 250 150
1/12/2001 250 150
1/1/2002 250 150
股票A的例子:
当库存A第一次更改(100到350)时,之前的值(100)被分配到提前2天(1/5/200)。然后当它再次从350变为500时,350被分配到提前2天(2000年1月10日)等.....然后进行前向填充。
任何帮助将不胜感激。
答案 0 :(得分:1)
df.where(df.diff(-1).fillna(0).ne(0)).shift(2).ffill()
A B
2000-01-01 NaN NaN
2000-02-01 NaN NaN
2000-03-01 NaN NaN
2000-04-01 NaN NaN
2000-05-01 100.0 NaN
2000-06-01 100.0 NaN
2000-07-01 100.0 NaN
2000-08-01 100.0 50.0
2000-09-01 100.0 50.0
2000-10-01 350.0 50.0
2000-11-01 350.0 50.0
2000-12-01 350.0 50.0
2001-01-01 350.0 25.0
2001-02-01 500.0 25.0
2001-03-01 500.0 25.0
2001-04-01 500.0 25.0
2001-05-01 500.0 25.0
2001-06-01 500.0 25.0
2001-07-01 500.0 25.0
2001-08-01 500.0 25.0
2001-09-01 250.0 25.0
2001-10-01 250.0 25.0
2001-11-01 250.0 150.0
2001-12-01 250.0 150.0
2002-01-01 250.0 150.0