我是tensorflow的初学者,我用它在图像上实现CNN,当我使用palceholder和feed_dir时,它给出了错误说
您必须为占位符
提供值
Grey_images = []
def Read_images():
for filename in glob.glob(r'Path*.jpg'):
img = Image.open(filename)
img = img.convert('L') # convert to gray scale
img = np.asanyarray(img)
img_shape = img.shape
img_reshaped = img.reshape(224,224,1 channels)
Grey_images.append(img_reshaped)#[#imgs,224,224,1]
Read_images()
img = tf.placeholder(dtype=tf.float32,shape=[None,224,224,1])
def RunAll():
layer = Layer(img,1,3,3,64,2,'Relu')
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
Prediction = sess.run(RunAll(),feed_dict={img:Grey_images})
这是类图层
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def Conv2d(inp, W ,Stride):
return tf.nn.conv2d(inp, W, strides=[1, Stride ,Stride, 1], padding='SAME')
class Layer:
def __init__(self, inp,inp_channels_num,filter_width_size,filter_height_size,outp_channels_num,stride,activation_func):
sess = tf.Session()
self.W_conv = weight_variable([filter_width_size, filter_height_size, inp_channels_num, outp_channels_num])
self.b_conv = bias_variable([outp_channels_num])
if (activation_func=='Sigmoid'):
self.h_conv = tf.nn.sigmoid(Conv2d(inp, self.W_conv, stride) + self.b_conv)
else:
self.h_conv = tf.nn.relu(Conv2d(inp, self.W_conv, stride) + self.b_conv)
sess.run(tf.global_variables_initializer())
self.h_conv = sess.run(self.h_conv)
sess.close()
它在这一行中给出了错误,但我在 sess.run(Runall())中使用了 feed_dir ,所以我缺少什么?
self.h_conv = sess.run(self.h_conv)
答案 0 :(得分:1)
您运行self.h_conv
的行也需要提供feed_dict
。
答案 1 :(得分:0)
你的整个程序在同一行上运行,你还没有提到错误是什么?
在你创建的函数Read_images()中没有返回任何值,所以你应该添加函数的最后一行
return Grey_images
并且在读取图像后未保存值。
在计划行Read_lines()
更改为Grey_images = Read_lines()