KafkaConsumer对于SparkStreaming的多线程访问不安全

时间:2017-03-13 11:02:41

标签: apache-spark apache-kafka spark-streaming kafka-consumer-api

我已经设置了多个来自不同kafka主题的流:

for(topic <- topics) {

  val stream = KafkaUtils.createDirectStream[String, String](
    ssc,
    PreferConsistent, 
    Subscribe[String, String](
      Array(topicConfig.srcTopic),
      kafkaParameters()
    )
  )
  stream.map(...).reduce(...)...
}

kafkaParameters基本上有所需的配置:

  "bootstrap.servers" -> bootstrapServers,
  "key.deserializer" -> classOf[StringDeserializer],
  "value.deserializer" -> classOf[StringDeserializer],
  "group.id" -> groupId,
  "auto.offset.reset" -> "latest",
  "enable.auto.commit" -> (false: java.lang.Boolean)//,

我正在使用kafka 0.10集成火花流。火花配置是:

val conf = new SparkConf().setMaster("local[*]").setAppName("AppName").set("spark.streaming.concurrentJobs", "4")

获得例外:

Caused by: java.util.ConcurrentModificationException: KafkaConsumer is not safe for multi-threaded access
at org.apache.kafka.clients.consumer.KafkaConsumer.acquire(KafkaConsumer.java:1625)
at org.apache.kafka.clients.consumer.KafkaConsumer.seek(KafkaConsumer.java:1198)
at org.apache.spark.streaming.kafka010.CachedKafkaConsumer.seek(CachedKafkaConsumer.scala:95)
at org.apache.spark.streaming.kafka010.CachedKafkaConsumer.get(CachedKafkaConsumer.scala:69)
at org.apache.spark.streaming.kafka010.KafkaRDD$KafkaRDDIterator.next(KafkaRDD.scala:228)
at org.apache.spark.streaming.kafka010.KafkaRDD$KafkaRDDIterator.next(KafkaRDD.scala:194)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:393)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1353)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
... 3 more

0 个答案:

没有答案