所以,我们有点困惑。在Jupyter Notebook中,我们有以下数据框:
Variable name: _JAVA_OPTIONS
Variable value: -Xmx512M
我们正在努力获得每小时的主题标签数量。我们采用的方法是使用Window来+--------------------+--------------+-------------+--------------------+--------+-------------------+
| created_at|created_at_int| screen_name| hashtags|ht_count| single_hashtag|
+--------------------+--------------+-------------+--------------------+--------+-------------------+
|2017-03-05 00:00:...| 1488672001| texanraj| [containers, cool]| 1| containers|
|2017-03-05 00:00:...| 1488672001| texanraj| [containers, cool]| 1| cool|
|2017-03-05 00:00:...| 1488672002| hubskihose|[automation, future]| 1| automation|
|2017-03-05 00:00:...| 1488672002| hubskihose|[automation, future]| 1| future|
|2017-03-05 00:00:...| 1488672002| IBMDevOps| [DevOps]| 1| devops|
|2017-03-05 00:00:...| 1488672003|SoumitraKJana|[VoiceOfWipro, Cl...| 1| voiceofwipro|
|2017-03-05 00:00:...| 1488672003|SoumitraKJana|[VoiceOfWipro, Cl...| 1| cloud|
|2017-03-05 00:00:...| 1488672003|SoumitraKJana|[VoiceOfWipro, Cl...| 1| leader|
|2017-03-05 00:00:...| 1488672003|SoumitraKJana| [Cloud, Cloud]| 1| cloud|
|2017-03-05 00:00:...| 1488672003|SoumitraKJana| [Cloud, Cloud]| 1| cloud|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1| voiceofwipro|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1| cloud|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1|managedfiletransfer|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1| asaservice|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1| interconnect2017|
|2017-03-05 00:00:...| 1488672004|SoumitraKJana|[VoiceOfWipro, Cl...| 1| hmi|
|2017-03-05 00:00:...| 1488672005|SoumitraKJana|[Cloud, ManagedFi...| 1| cloud|
|2017-03-05 00:00:...| 1488672005|SoumitraKJana|[Cloud, ManagedFi...| 1|managedfiletransfer|
|2017-03-05 00:00:...| 1488672005|SoumitraKJana|[Cloud, ManagedFi...| 1| asaservice|
|2017-03-05 00:00:...| 1488672005|SoumitraKJana|[Cloud, ManagedFi...| 1| interconnect2017|
+--------------------+--------------+-------------+--------------------+--------+-------------------+
only showing top 20 rows
root
|-- created_at: timestamp (nullable = true)
|-- created_at_int: integer (nullable = true)
|-- screen_name: string (nullable = true)
|-- hashtags: array (nullable = true)
| |-- element: string (containsNull = true)
|-- ht_count: integer (nullable = true)
|-- single_hashtag: string (nullable = true)
进行分区。像这样:
single_hashtag
但是,当我们尝试使用以下内容执行# create WindowSpec
hashtags_24_winspec = Window.partitionBy(hashtags_24.single_hashtag). \
orderBy(hashtags_24.created_at_int).rangeBetween(-3600, 3600)
列的总和时:
ht_count
我们收到以下错误:
#sum_count_over_time = sum(hashtags_24.ht_count).over(hashtags_24_winspec)
错误信息的信息量不大,我们感到困惑,究竟要对哪一列进行调查。有什么想法吗?
答案 0 :(得分:5)
您使用了错误的sum
:
from pyspark.sql.functions import sum
sum_count_over_time = sum(hashtags_24.ht_count).over(hashtags_24_winspec)
在实践中,您可能需要别名或包导入:
from pyspark.sql.functions import sum as sql_sum
# or
from pyspark.sql.functions as F
F.sum(...)