用于子集和调整向量的函数

时间:2017-03-12 20:46:12

标签: r function vector quantile

该函数应该在第1百分位数和第99百分位数处采用向量和winsorize值(将第99百分位数的值替换为第99百分位数,反之,将值替换为低于第1百分位数的值)。我可以在没有任何错误的情况下运行该函数,但它不会更改作为参数给出的向量。当我在函数外部运行相同的代码时,它工作正常,但我必须为data.frame中的许多列执行此操作,因此我希望能够通过apply函数传递函数。

wins <- function(vect, prob = c(0.01, 0.99)){
    #vect is a vector with values to be winsorized
    #prob contains top and bottom percentiles at which to winsorize data in vect

    low_quantile <- quantile(vect, probs = prob[1], na.rm = TRUE)
    high_quantile <- quantile(vect, probs = prob[2], na.rm = TRUE)

    vect[vect < low_quantile] <- low_quantile
    vect[vect > high_quantile] <- high_quantile
}

有什么建议吗?

1 个答案:

答案 0 :(得分:1)

在函数末尾添加vect,以便返回最后一个元素。

wins <- function(vect, prob = c(0.01, 0.99)){
#vect is a vector with values to be winsorized
#prob contains top and bottom percentiles at which to winsorize data in vect

low_quantile <- quantile(vect, probs = prob[1], na.rm = TRUE)
high_quantile <- quantile(vect, probs = prob[2], na.rm = TRUE)

vect[vect < low_quantile] <- low_quantile
vect[vect > high_quantile] <- high_quantile
vect
}

wins(1:100)
  [1]  1.99  2.00  3.00  4.00  5.00  6.00  7.00  8.00  9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00
 [19] 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00
 [37] 37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00
 [55] 55.00 56.00 57.00 58.00 59.00 60.00 61.00 62.00 63.00 64.00 65.00 66.00 67.00 68.00 69.00 70.00 71.00 72.00
 [73] 73.00 74.00 75.00 76.00 77.00 78.00 79.00 80.00 81.00 82.00 83.00 84.00 85.00 86.00 87.00 88.00 89.00 90.00
 [91] 91.00 92.00 93.00 94.00 95.00 96.00 97.00 98.00 99.00 99.01

修改 关于如何将其应用于data.frame的后续问题:

df1 <- data.frame(matrix(1:200,ncol=2))
apply(df1,2,wins) # apply by column
> apply(df1,2,wins)
          X1     X2
  [1,]  1.99 101.99
  [2,]  2.00 102.00
  [3,]  3.00 103.00
  [4,]  4.00 104.00
  [5,]  5.00 105.00
...

在您进行后续跟踪时,它也适用于单个列:

wins(df1$X1)
[1]  1.99  2.00  3.00  4.00  5.00  6.00  7.00  8.00  9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00
 [19] 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00
 [37] 37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00
 [55] 55.00 56.00 57.00 58.00 59.00 60.00 61.00 62.00 63.00 64.00 65.00 66.00 67.00 68.00 69.00 70.00 71.00 72.00
 [73] 73.00 74.00 75.00 76.00 77.00 78.00 79.00 80.00 81.00 82.00 83.00 84.00 85.00 86.00 87.00 88.00 89.00 90.00
 [91] 91.00 92.00 93.00 94.00 95.00 96.00 97.00 98.00 99.00 99.01