我试图实施猜谜游戏,其中用户猜测硬币翻转,神经网络试图预测他的猜测(当然没有后见之明的知识)。游戏应该是实时的,它适应用户。我使用了突触js,因为它看起来很稳固。
然而,我似乎无法通过一个绊脚石:神经网络不断跟踪它的猜测。比如,如果用户按下
heads heads tail heads heads tail heads heads tail
它确实识别出这种模式,但它却落后于像
这样的两个动作tail heads heads tail heads heads tail heads heads
我尝试了无数的策略:
架构:
我已经在隐藏层和各种训练时期尝试了10-30个神经元,但我经常遇到同样的问题!
我发布了这样做的bucklescript代码。
我做错了什么?或者我的预期对于预测用户实时猜测是不合理的?有没有其他算法?
class type _nnet = object
method activate : float array -> float array
method propagate : float -> float array -> unit
method clone : unit -> _nnet Js.t
method clear : unit -> unit
end [@bs]
type nnet = _nnet Js.t
external ltsm : int -> int -> int -> nnet = "synaptic.Architect.LSTM" [@@bs.new]
external ltsm_2 : int -> int -> int -> int -> nnet = "synaptic.Architect.LSTM" [@@bs.new]
external ltsm_3 : int -> int -> int -> int -> int -> nnet = "synaptic.Architect.LSTM" [@@bs.new]
external perceptron : int -> int -> int -> nnet = "synaptic.Architect.Perceptron" [@@bs.new]
type id
type dom
(** Abstract type for id object *)
external dom : dom = "document" [@@bs.val]
external get_by_id : dom -> string -> id =
"getElementById" [@@bs.send]
external set_text : id -> string -> unit =
"innerHTML" [@@bs.set]
(*THE CODE*)
let current_net = ltsm 2 16 2
let training_momentum = 0.1
let training_epochs = 20
let training_memory = 16
let rec train_sequence_rec n the_array =
if n > 0 then (
current_net##propagate training_momentum the_array;
train_sequence_rec (n - 1) the_array
)
let print_arr prefix the_arr =
print_endline (prefix ^ " " ^
(Pervasives.string_of_float (Array.get the_arr 0)) ^ " " ^
(Pervasives.string_of_float (Array.get the_arr 1)))
let blank_arr =
fun () ->
let res = Array.make_float 2 in
Array.fill res 0 2 0.0;
res
let derive_guess_from_array the_arr =
Array.get the_arr 0 < Array.get the_arr 1
let set_array_inp the_value the_arr =
if the_value then
Array.set the_arr 1 1.0
else
Array.set the_arr 0 1.0
let output_array the_value =
let farr = blank_arr () in
set_array_inp the_value farr;
farr
let by_id the_id = get_by_id (dom) the_id
let update_prediction_in_ui the_value =
let elem = by_id "status-text" in
if not the_value then
set_text elem "Predicted Heads"
else
set_text elem "Predicted Tails"
let inc_ref the_ref = the_ref := !the_ref + 1
let total_guesses_count = ref 0
let steve_won_count = ref 0
let sequence = Array.make training_memory false
let seq_ptr = ref 0
let seq_count = ref 0
let push_seq the_value =
Array.set sequence (!seq_ptr mod training_memory) the_value;
inc_ref seq_ptr;
if !seq_count < training_memory then
inc_ref seq_count
let seq_start_offset () =
(!seq_ptr - !seq_count) mod training_memory
let traverse_seq the_fun =
let incr = ref 0 in
let begin_at = seq_start_offset () in
let next_i () = (begin_at + !incr) mod training_memory in
let rec loop () =
if !incr < !seq_count then (
let cval = Array.get sequence (next_i ()) in
the_fun cval;
inc_ref incr;
loop ()
) in
loop ()
let first_in_sequence () =
Array.get sequence (seq_start_offset ())
let last_in_sequence_n n =
let curr = ((!seq_ptr - n) mod training_memory) - 1 in
if curr >= 0 then
Array.get sequence curr
else
false
let last_in_sequence () = last_in_sequence_n 0
let perceptron_input last_n_fields =
let tot_fields = (3 * last_n_fields) in
let out_arr = Array.make_float tot_fields in
Array.fill out_arr 0 tot_fields 0.0;
let rec loop count =
if count < last_n_fields then (
if count >= !seq_count then (
Array.set out_arr (3 * count) 1.0;
) else (
let curr = last_in_sequence_n count in
let the_slot = if curr then 1 else 0 in
Array.set out_arr (3 * count + 1 + the_slot) 1.0
);
loop (count + 1)
) in
loop 0;
out_arr
let steve_won () = inc_ref steve_won_count
let propogate_n_times the_output =
let rec loop cnt =
if cnt < training_epochs then (
current_net##propagate training_momentum the_output;
loop (cnt + 1)
) in
loop 0
let print_prediction prev exp pred =
print_endline ("Current training, previous: " ^ (Pervasives.string_of_bool prev) ^
", expected: " ^ (Pervasives.string_of_bool exp)
^ ", predicted: " ^ (Pervasives.string_of_bool pred))
let train_from_sequence () =
current_net##clear ();
let previous = ref (first_in_sequence ()) in
let count = ref 0 in
print_endline "NEW TRAINING BATCH";
traverse_seq (fun i ->
let inp_arr = output_array !previous in
let out_arr = output_array i in
let act_res = current_net##activate inp_arr in
print_prediction !previous i (derive_guess_from_array act_res);
propogate_n_times out_arr;
previous := i;
inc_ref count
)
let update_counts_in_ui () =
let tot = by_id "total-count" in
let won = by_id "steve-won-count" in
set_text tot (Pervasives.string_of_int !total_guesses_count);
set_text won (Pervasives.string_of_int !steve_won_count)
let train_sequence (the_value : bool) =
train_from_sequence ();
let last_guess = (last_in_sequence ()) in
let before_train = current_net##activate (output_array last_guess) in
let act_result = derive_guess_from_array before_train in
(*side effects*)
push_seq the_value;
inc_ref total_guesses_count;
if the_value = act_result then steve_won ();
print_endline "CURRENT";
print_prediction last_guess the_value act_result;
update_prediction_in_ui act_result;
update_counts_in_ui ()
let guess (user_guess : bool) =
train_sequence user_guess
let () = ()
答案 0 :(得分:1)
您的代码中的问题是您的网络已经过培训。不是培训1 > 2 > 3 RESET 1 > 2 > 3
,而是培训网络1 > 2 > 3 > 1 > 2 > 3
。这使您的网络认为3
之后的值应为1
。
其次,没有理由使用2个输出神经元。只要一个就足够了,输出1
等于头,输出0
等于尾。我们只是围绕输出。
我没有使用Synaptic,而是在此代码中使用了Neataptic - 它是Synaptic的改进版本,增加了功能和遗传算法。
代码非常简单。稍微贬低它,它看起来像这样:
var network = new neataptic.Architect.LSTM(1,12,1);;
var previous = null;
var trainingData = [];
// side is 1 for heads and 0 for tails
function onSideClick(side){
if(previous != null){
trainingData.push({ input: [previous], output: [side] });
// Train the data
network.train(trainingData, {
log: 500,
iterations: 5000,
error: 0.03,
clear: true,
rate: 0.05,
});
// Iterate over previous sets to get into the 'flow'
for(var i in trainingData){
var input = trainingData[i].input;
var output = Math.round(network.activate([input]));
}
// Activate network with previous output, aka make a prediction
var input = output;
var output = Math.round(network.activate([input]))
}
previous = side;
}
此代码的关键是clear: true
。这基本上确保网络知道它从第一个训练样本开始,而不是从最后一个训练样本继续。 LSTM的大小,迭代计数和学习率是完全可定制的。
请注意,它需要大约2倍的网络模式才能学习它。