序列预测LSTM神经网络落后

时间:2017-03-12 15:52:35

标签: neural-network lstm recurrent-neural-network

我试图实施猜谜游戏,其中用户猜测硬币翻转,神经网络试图预测他的猜测(当然没有后见之明的知识)。游戏应该是实时的,它适应用户。我使用了突触js,因为它看起来很稳固。

然而,我似乎无法通过一个绊脚石:神经网络不断跟踪它的猜测。比如,如果用户按下

heads heads tail heads heads tail heads heads tail

它确实识别出这种模式,但它却落后于像

这样的两个动作
tail heads heads tail heads heads tail heads heads

我尝试了无数的策略:

  • 用户点击头部或尾部时与用户一起训练网络
  • 拥有用户条目和清除网络内存的日志,并使用所有条目进行重新训练
  • 将训练与激活方式混合搭配
  • 尝试移动到感知器,立即传递一堆动作(比LSTM更糟糕)
  • 我忘记了一堆其他的东西

架构:

  • 2个输入,无论用户是否在上一回合点击了头部或尾部
  • 2个输出,预测用户下次点击的内容(这将在下一回合输入)

我已经在隐藏层和各种训练时期尝试了10-30个神经元,但我经常遇到同样的问题!

我发布了这样做的bucklescript代码。

我做错了什么?或者我的预期对于预测用户实时猜测是不合理的?有没有其他算法?

class type _nnet = object
    method activate : float array -> float array
    method propagate : float -> float array -> unit
    method clone : unit -> _nnet Js.t
    method clear : unit -> unit
end [@bs]

type nnet = _nnet Js.t

external ltsm : int -> int -> int -> nnet = "synaptic.Architect.LSTM" [@@bs.new]
external ltsm_2 : int -> int -> int -> int -> nnet = "synaptic.Architect.LSTM" [@@bs.new]
external ltsm_3 : int -> int -> int -> int -> int -> nnet = "synaptic.Architect.LSTM" [@@bs.new]
external perceptron : int -> int -> int -> nnet = "synaptic.Architect.Perceptron" [@@bs.new]

type id
type dom
  (** Abstract type for id object *)

external dom : dom = "document" [@@bs.val]

external get_by_id : dom -> string -> id =
  "getElementById" [@@bs.send]

external set_text : id -> string -> unit =
  "innerHTML" [@@bs.set]

(*THE CODE*)

let current_net = ltsm 2 16 2
let training_momentum = 0.1
let training_epochs = 20
let training_memory = 16

let rec train_sequence_rec n the_array =
    if n > 0 then (
        current_net##propagate training_momentum the_array;
        train_sequence_rec (n - 1) the_array
    )

let print_arr prefix the_arr =
    print_endline (prefix ^ " " ^
        (Pervasives.string_of_float (Array.get the_arr 0)) ^ " " ^
        (Pervasives.string_of_float (Array.get the_arr 1)))

let blank_arr =
    fun () ->
    let res = Array.make_float 2 in
    Array.fill res 0 2 0.0;
    res

let derive_guess_from_array the_arr =
    Array.get the_arr 0 < Array.get the_arr 1

let set_array_inp the_value the_arr =
    if the_value then
        Array.set the_arr 1 1.0
    else
        Array.set the_arr 0 1.0

let output_array the_value =
    let farr = blank_arr () in
    set_array_inp the_value farr;
    farr

let by_id the_id = get_by_id (dom) the_id

let update_prediction_in_ui the_value =
    let elem = by_id "status-text" in
    if not the_value then
        set_text elem "Predicted Heads"
    else
        set_text elem "Predicted Tails"

let inc_ref the_ref = the_ref := !the_ref + 1

let total_guesses_count = ref 0
let steve_won_count = ref 0

let sequence = Array.make training_memory false
let seq_ptr = ref 0
let seq_count = ref 0

let push_seq the_value =
    Array.set sequence (!seq_ptr mod training_memory) the_value;
    inc_ref seq_ptr;
    if !seq_count < training_memory then
        inc_ref seq_count

let seq_start_offset () =
    (!seq_ptr - !seq_count) mod training_memory

let traverse_seq the_fun =
    let incr = ref 0 in
    let begin_at = seq_start_offset () in
    let next_i () = (begin_at + !incr) mod training_memory in
    let rec loop () =
        if !incr < !seq_count then (
            let cval = Array.get sequence (next_i ()) in
            the_fun cval;
            inc_ref incr;
            loop ()
        ) in
    loop ()

let first_in_sequence () =
    Array.get sequence (seq_start_offset ())

let last_in_sequence_n n =
    let curr = ((!seq_ptr - n) mod training_memory) - 1 in
    if curr >= 0 then
        Array.get sequence curr
    else
        false

let last_in_sequence () = last_in_sequence_n 0

let perceptron_input last_n_fields =
    let tot_fields = (3 * last_n_fields) in
    let out_arr = Array.make_float tot_fields in
    Array.fill out_arr 0 tot_fields 0.0;
    let rec loop count =
        if count < last_n_fields then (
            if count >= !seq_count then (
                Array.set out_arr (3 * count) 1.0;
            ) else (
                let curr = last_in_sequence_n count in
                let the_slot = if curr then 1 else 0 in
                Array.set out_arr (3 * count + 1 + the_slot) 1.0
            );
            loop (count + 1)
        ) in
    loop 0;
    out_arr

let steve_won () = inc_ref steve_won_count

let propogate_n_times the_output =
    let rec loop cnt =
        if cnt < training_epochs then (
            current_net##propagate training_momentum the_output;
            loop (cnt + 1)
        ) in
    loop 0

let print_prediction prev exp pred =
    print_endline ("Current training, previous: " ^ (Pervasives.string_of_bool prev) ^
        ", expected: " ^ (Pervasives.string_of_bool exp)
        ^ ", predicted: " ^ (Pervasives.string_of_bool pred))

let train_from_sequence () =
    current_net##clear ();
    let previous = ref (first_in_sequence ()) in
    let count = ref 0 in
    print_endline "NEW TRAINING BATCH";
    traverse_seq (fun i ->
        let inp_arr = output_array !previous in
        let out_arr = output_array i in
        let act_res = current_net##activate inp_arr in
        print_prediction !previous i (derive_guess_from_array act_res);
        propogate_n_times out_arr;
        previous := i;
        inc_ref count
    )

let update_counts_in_ui () =
    let tot = by_id "total-count" in
    let won = by_id "steve-won-count" in
    set_text tot (Pervasives.string_of_int !total_guesses_count);
    set_text won (Pervasives.string_of_int !steve_won_count)

let train_sequence (the_value : bool) =
    train_from_sequence ();
    let last_guess = (last_in_sequence ()) in
    let before_train = current_net##activate (output_array last_guess) in
    let act_result = derive_guess_from_array before_train in
    (*side effects*)

    push_seq the_value;

    inc_ref total_guesses_count;
    if the_value = act_result then steve_won ();
    print_endline "CURRENT";
    print_prediction last_guess the_value act_result;
    update_prediction_in_ui act_result;
    update_counts_in_ui ()

let guess (user_guess : bool) =
    train_sequence user_guess

let () = ()

1 个答案:

答案 0 :(得分:1)

在每次训练迭代之前清除网络上下文是修复

您的代码中的问题是您的网络已经过培训。不是培训1 > 2 > 3 RESET 1 > 2 > 3,而是培训网络1 > 2 > 3 > 1 > 2 > 3。这使您的网络认为3之后的值应为1

其次,没有理由使用2个输出神经元。只要一个就足够了,输出1等于头,输出0等于尾。我们只是围绕输出。

我没有使用Synaptic,而是在此代码中使用了Neataptic - 它是Synaptic的改进版本,增加了功能和遗传算法。

代码

代码非常简单。稍微贬低它,它看起来像这样:

var network = new neataptic.Architect.LSTM(1,12,1);;
var previous = null;
var trainingData = [];

// side is 1 for heads and 0 for tails
function onSideClick(side){
  if(previous != null){
    trainingData.push({ input: [previous], output: [side] });

    // Train the data
    network.train(trainingData, {
      log: 500,
      iterations: 5000,
      error: 0.03,
      clear: true,
      rate: 0.05,
    });

    // Iterate over previous sets to get into the 'flow'
    for(var i in trainingData){
      var input = trainingData[i].input;
      var output = Math.round(network.activate([input]));
    }

    // Activate network with previous output, aka make a prediction
    var input = output;
    var output = Math.round(network.activate([input]))
  }

  previous = side;
}

Run the code here!

此代码的关键是clear: true。这基本上确保网络知道它从第一个训练样本开始,而不是从最后一个训练样本继续。 LSTM的大小,迭代计数和学习率是完全可定制的。

成功!

请注意,它需要大约2倍的网络模式才能学习它。

enter image description here

enter image description here

enter image description here

但是,它确实存在非重复模式的问题: enter image description here