我有两个大型数据集,一个大约五十万个记录,另一个大约70K。这些数据集有地址。如果较小数据集中的任何地址存在于大数据集中,我想匹配。正如您所想象的那样,地址可以用不同的方式和不同的情况/拼写等来写。除了这个地址可以复制,如果只写到建筑物级别。所以不同的公寓有相同的地址。我做了一些研究并找出了可以使用的包stringdist。
我做了一些工作并设法根据距离获得最接近的匹配。但是,我无法返回地址匹配的相应列。
下面是一个示例虚拟数据以及我为解释情况而创建的代码
library(stringdist)
Address1 <- c("786, GALI NO 5, XYZ","rambo, 45, strret 4, atlast, pqr","23/4, 23RD FLOOR, STREET 2, ABC-E, PQR","45-B, GALI NO5, XYZ","HECTIC, 99 STREET, PQR","786, GALI NO 5, XYZ","rambo, 45, strret 4, atlast, pqr")
Year1 <- c(2001:2007)
Address2 <- c("abc, pqr, xyz","786, GALI NO 4 XYZ","45B, GALI NO 5, XYZ","del, 546, strret2, towards east, pqr","23/4, STREET 2, PQR","abc, pqr, xyz","786, GALI NO 4 XYZ","45B, GALI NO 5, XYZ","del, 546, strret2, towards east, pqr","23/4, STREET 2, PQR")
Year2 <- c(2001:2010)
df1 <- data.table(Address1,Year1)
df2 <- data.table(Address2,Year2)
df2[,unique_id := sprintf("%06d", 1:nrow(df2))]
fn_match = function(str, strVec, n){
strVec[amatch(str, strVec, method = "dl", maxDist=n,useBytes = T)]
}
df1[!is.na(Address1)
, address_match :=
fn_match(Address1, df2$Address2,3)
]
这将返回基于距离3的闭合字符串匹配,但是我还希望列有&#34;年&#34;和&#34; unique_id&#34;来自df1中的df2。这将帮助我知道字符串与df2匹配的数据行。所以最后我想知道 df1中的每一行 根据指定的距离,df2的壁橱匹配是什么,并且匹配的行具有特定的 &#34;年&#34; 和&#34; unique_id&#34;来自df2 。
我想与merge(左连接)有关,但我不知道如何合并保留重复项并确保我有与df1(小数据集)相同的行数。
任何类型的解决方案都会有所帮助!!
答案 0 :(得分:1)
你有90%的路在那里......
你说你想要
知道字符串与df2匹配的数据行
您只需了解您已有的代码即可。见?amatch
:
amatch
返回x
中table
最接近匹配的位置。当存在具有相同最小距离度量的多个匹配时,返回第一个匹配。
换句话说,amatch
为df2
(table
中与df1
中每个地址最匹配的行中的行提供了索引(这是你的x
)。您通过返回新地址来过早地包装此索引。
相反,检索索引本身以查找或 unique_id(如果您确信它确实是唯一ID),则为左连接。
两种方法的说明:
library(data.table) # you forgot this in your example
library(stringdist)
df1 <- data.table(Address1 = c("786, GALI NO 5, XYZ","rambo, 45, strret 4, atlast, pqr","23/4, 23RD FLOOR, STREET 2, ABC-E, PQR","45-B, GALI NO5, XYZ","HECTIC, 99 STREET, PQR","786, GALI NO 5, XYZ","rambo, 45, strret 4, atlast, pqr"),
Year1 = 2001:2007) # already a vector, no need to combine
df2 <- data.table(Address2=c("abc, pqr, xyz","786, GALI NO 4 XYZ","45B, GALI NO 5, XYZ","del, 546, strret2, towards east, pqr","23/4, STREET 2, PQR","abc, pqr, xyz","786, GALI NO 4 XYZ","45B, GALI NO 5, XYZ","del, 546, strret2, towards east, pqr","23/4, STREET 2, PQR"),
Year2=2001:2010)
df2[,unique_id := sprintf("%06d", .I)] # use .I, it's neater
# Return position from strVec of closest match to str
match_pos = function(str, strVec, n){
amatch(str, strVec, method = "dl", maxDist=n,useBytes = T) # are you sure you want useBytes = TRUE?
}
# Option 1: use unique_id as a key for left join
df1[!is.na(Address1) | nchar(Address1>0), # I would exclude only on NA_character_ but also empty string, perhaps string of length < 3
unique_id := df2$unique_id[match_pos(Address1, df2$Address2,3)] ]
merge(df1, df2, by='unique_id', all.x=TRUE) # see ?merge for more options
# Option 2: use the row index
df1[!is.na(Address1) | nchar(Address1>0),
df2_pos := match_pos(Address1, df2$Address2,3) ]
df1[!is.na(df2_pos), (c('Address2','Year2','UniqueID')):=df2[df2_pos,.(Address2,Year2,unique_id)] ][]
答案 1 :(得分:0)
以下是使用fuzzyjoin
包的解决方案。它使用dplyr
- 类似语法和stringdist
作为模糊匹配的可能类型之一。
您可以使用stringdist
method =&#34; dl&#34; (或其他可能更好的工作)。
为了满足您的要求&#34;确保我的行数与df1&#34;相同,我使用了一个较大的max_dist,然后使用dplyr::group_by
和dplyr::top_n
来获取与最小距离最佳匹配。这是fuzzyjoin
的开发人员dgrtwo suggested。 (希望它将来会成为软件包本身的一部分。)
(我还必须假设在距离关系的情况下采用最大年份2。)
<强>代码:强>
library(data.table, quietly = TRUE)
df1 <- data.table(Address1 = c("786, GALI NO 5, XYZ","rambo, 45, strret 4, atlast, pqr","23/4, 23RD FLOOR, STREET 2, ABC-E, PQR","45-B, GALI NO5, XYZ","HECTIC, 99 STREET, PQR","786, GALI NO 5, XYZ","rambo, 45, strret 4, atlast, pqr"),
Year1 = 2001:2007)
df2 <- data.table(Address2=c("abc, pqr, xyz","786, GALI NO 4 XYZ","45B, GALI NO 5, XYZ","del, 546, strret2, towards east, pqr","23/4, STREET 2, PQR","abc, pqr, xyz","786, GALI NO 4 XYZ","45B, GALI NO 5, XYZ","del, 546, strret2, towards east, pqr","23/4, STREET 2, PQR"),
Year2=2001:2010)
df2[,unique_id := sprintf("%06d", .I)]
library(fuzzyjoin, quietly = TRUE); library(dplyr, quietly = TRUE)
stringdist_join(df1, df2,
by = c("Address1" = "Address2"),
mode = "left",
method = "dl",
max_dist = 99,
distance_col = "dist") %>%
group_by(Address1, Year1) %>%
top_n(1, -dist) %>%
top_n(1, Year2)
<强>结果:强>
# A tibble: 7 x 6
# Groups: Address1, Year1 [7]
Address1 Year1 Address2 Year2 unique_id dist
<chr> <int> <chr> <int> <chr> <dbl>
1 786, GALI NO 5, XYZ 2001 786, GALI NO 4 XYZ 2007 000007 2
2 rambo, 45, strret 4, atlast, pqr 2002 del, 546, strret2, towards east, pqr 2009 000009 17
3 23/4, 23RD FLOOR, STREET 2, ABC-E, PQR 2003 23/4, STREET 2, PQR 2010 000010 19
4 45-B, GALI NO5, XYZ 2004 45B, GALI NO 5, XYZ 2008 000008 2
5 HECTIC, 99 STREET, PQR 2005 23/4, STREET 2, PQR 2010 000010 11
6 786, GALI NO 5, XYZ 2006 786, GALI NO 4 XYZ 2007 000007 2
7 rambo, 45, strret 4, atlast, pqr 2007 del, 546, strret2, towards east, pqr 2009 000009 17