我试图在opencv c ++ 2.4.13.2版本中使用直方图均衡的库例程来实现我自己的直方图均衡。 我在终端编译程序如下:
g++ `pkg-config --cflags opencv` histogram_Equalization.cpp `pkg-config --libs opencv` -o histeq
以下是我的代码:
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/core/core.hpp>
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
using namespace std;
using namespace cv;
Mat *calculateHist(Mat &M, Mat &He)
{
float P[256]={0};
int i, j, k, r;
float sum = 0.0;
float T[256]={0};
int S[256]={0};
for(i=0;i<M.rows;i++)
{
for(j=0;j<M.cols;j++)
{
int tmp = M.at<uchar>(i,j);
P[tmp] = P[tmp] +1; //[(M.at<uchar>(i,j))] + 1;
}
}
for (i=0;i<M.rows;i++)
{
for(j=0;j<M.cols;j++)
{
sum = sum + P[(M.at<uchar>(i,j))];
}
}
//int num_pixel = (M.rows)*(M.cols)
for(i=0;i<256;i++)
{
P[i] = P[i]/(sum);
}
T[0] = P[0];
for( k=1; k<256;k++)
{
T[k] = T[k-1] + P[k];
}
for( r=0; r< 256; r++)
{
S[r] = cvRound(T[r]*255);
}
for(i=0;i<M.rows;i++)
{
for(j=0;j<M.cols;j++)
{
r = M.at<uchar>(i, j);
He.at<uchar>(i,j) = S[r];
}
}
return (&He);
}
int main(int argc, char *argv[])
{
Mat image = imread(argv[1],0);
Mat He(image.size,image.type);
He = calculateHist(image, He);
imshow("original_image", image);
imshow( "histogram_equalized", He );
waitKey(0);
return 0;
}
答案 0 :(得分:1)
size
和type
为functions of the class Mat
,而不是属性,因此您必须使用size()
和type()
与他们联系。
正如ZdaR在评论中所说,calculateHist
返回指向修改后图像的指针。这里没有必要,因为你传递He
by reference,原始对象被函数修改。
所以,这应该有效:
Mat He(image.size(),image.type());
calculateHist(image, He);
答案 1 :(得分:0)
我纠正了自己的错误,这是代码:
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/core/core.hpp>
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
using namespace std;
using namespace cv;
int main(int argc, char *argv[])
{
Mat image = imread(argv[1],0);
Mat He(image.rows, image.cols, CV_8U);
float P[256]={0};
int i, j, k, r;
float sum = 0.0;
float T[256]={0};
int S[256]={0};
/* This is to calculate the frequency of each pixel value in the range 0-255*/
for(i=0;i<image.rows;i++)
{
for(j=0;j<image.cols;j++)
{
int tmp = image.at<uchar>(i,j);
P[tmp] = P[tmp] +1; //[(M.at<uchar>(i,j))] + 1;
}
}
/*this part of the code is to find the total number of all the frequency of each pixel and then divide each freq val by this sum*/
for(j=0;j<256;j++)
{
sum = sum + P[j];
}
for(i=0;i<256;i++)
{
P[i] = P[i]/(sum);
}
/*calculation of the cdf*/
T[0] = P[0];
for( k=1; k<256;k++)
{
T[k] = T[k-1] + P[k];
}
/*multiply it with the Level-1 here L=256*/
for( r=0; r< 256; r++)
{
S[r] = cvRound(T[r]*255);
}
/*mapping of each pixel value to the new based on the values in S array and assign it to the output image He*/
for(i=0;i<image.rows;i++)
{
for(j=0;j<image.cols;j++)
{
r = image.at<uchar>(i, j);
He.at<uchar>(i,j) = S[r];
}
}
imshow("original_image", image);
imshow( "histogram_equalized", He );
waitKey(0);
return 0;
}