我正在做10x10 StratifiedShuffleSplit。我平均每个折叠的所有精度。 正如您在代码中看到的,我使用10个不同的random_states进行SSS。但对于RandomForest,我不使用任何东西。 我是否也应该在RandomForest中指定random_state? 如果我不这样做会怎么样?
谢谢。
result_list = []
for name in ["AWA"]:
for el in ['Fp1']:
x=sio.loadmat('/home/TrainVal/{}_{}.mat'.format(name, el))['x']
s_y=sio.loadmat('/home/TrainVal/{}_{}.mat'.format(name, el))['y']
y=np.ravel(s_y)
print(name, el, x.shape, y.shape)
print("")
clf = make_pipeline(preprocessing.RobustScaler(), RandomForestClassifier())
##################10x10 SSS#############
print("10x10")
xSSSmean10 = []
for i in range(10):
sss = StratifiedShuffleSplit(y, 10, test_size=0.1, random_state=i)
scoresSSS = cross_validation.cross_val_score(clf, x, y , cv=sss)
xSSSmean10.append(scoresSSS.mean())
result_list.append(xSSSmean10)